K. Gałkowski, E. Rogers, A. Gramacki, J. Gramacki, D. Owens
{"title":"Strong practical stability for a class of 2D linear systems","authors":"K. Gałkowski, E. Rogers, A. Gramacki, J. Gramacki, D. Owens","doi":"10.1109/ISCAS.2000.857115","DOIUrl":null,"url":null,"abstract":"Linear repetitive processes are a distinct class of 2D linear systems of both theoretical and practical interest. The stability theory for these processes currently consists of two distinct concepts termed asymptotic stability and stability along the pass respectively where the former is a necessary condition for the latter. Recently applications have arisen where asymptotic stability is too weak and stability along the pass is too strong for meaningful progress to be made. This paper develops the concept of strong practical stability for such cases.","PeriodicalId":6422,"journal":{"name":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2000.857115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
Linear repetitive processes are a distinct class of 2D linear systems of both theoretical and practical interest. The stability theory for these processes currently consists of two distinct concepts termed asymptotic stability and stability along the pass respectively where the former is a necessary condition for the latter. Recently applications have arisen where asymptotic stability is too weak and stability along the pass is too strong for meaningful progress to be made. This paper develops the concept of strong practical stability for such cases.