Quasi-polynomial-time algorithm for Independent Set in Pt-free graphs via shrinking the space of induced paths

Marcin Pilipczuk, Michal Pilipczuk, Paweł Rzaͅżewski
{"title":"Quasi-polynomial-time algorithm for Independent Set in Pt-free graphs via shrinking the space of induced paths","authors":"Marcin Pilipczuk, Michal Pilipczuk, Paweł Rzaͅżewski","doi":"10.1137/1.9781611976496.23","DOIUrl":null,"url":null,"abstract":"In a recent breakthrough work, Gartland and Lokshtanov [FOCS 2020] showed a quasi-polynomial-time algorithm for Maximum Weight Independent Set in $P_t$-free graphs, that is, graphs excluding a fixed path as an induced subgraph. Their algorithm runs in time $n^{\\mathcal{O}(\\log^3 n)}$, where $t$ is assumed to be a constant. Inspired by their ideas, we present an arguably simpler algorithm with an improved running time bound of $n^{\\mathcal{O}(\\log^2 n)}$. Our main insight is that a connected $P_t$-free graph always contains a vertex $w$ whose neighborhood intersects, for a constant fraction of pairs $\\{u,v\\} \\in \\binom{V(G)}{2}$, a constant fraction of induced $u-v$ paths. Since a $P_t$-free graph contains $\\mathcal{O}(n^{t-1})$ induced paths in total, branching on such a vertex and recursing independently on the connected components leads to a quasi-polynomial running time bound. We also show that the same approach can be used to obtain quasi-polynomial-time algorithms for related problems, including Maximum Weight Induced Matching and 3-Coloring.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"76 1","pages":"204-209"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611976496.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

In a recent breakthrough work, Gartland and Lokshtanov [FOCS 2020] showed a quasi-polynomial-time algorithm for Maximum Weight Independent Set in $P_t$-free graphs, that is, graphs excluding a fixed path as an induced subgraph. Their algorithm runs in time $n^{\mathcal{O}(\log^3 n)}$, where $t$ is assumed to be a constant. Inspired by their ideas, we present an arguably simpler algorithm with an improved running time bound of $n^{\mathcal{O}(\log^2 n)}$. Our main insight is that a connected $P_t$-free graph always contains a vertex $w$ whose neighborhood intersects, for a constant fraction of pairs $\{u,v\} \in \binom{V(G)}{2}$, a constant fraction of induced $u-v$ paths. Since a $P_t$-free graph contains $\mathcal{O}(n^{t-1})$ induced paths in total, branching on such a vertex and recursing independently on the connected components leads to a quasi-polynomial running time bound. We also show that the same approach can be used to obtain quasi-polynomial-time algorithms for related problems, including Maximum Weight Induced Matching and 3-Coloring.
通过压缩诱导路径空间求无pt图中独立集的拟多项式时间算法
在最近的一项突破性工作中,Gartland和Lokshtanov [FOCS 2020]展示了$P_t$ free图(即不包含固定路径作为诱导子图的图)中最大权重独立集的拟多项式时间算法。他们的算法运行时间为$n^{\mathcal{O}(\log^ 3n)}$,其中$t$被假定为常数。受他们想法的启发,我们提出了一个更简单的算法,改进了运行时间界限$n^{\mathcal{O}(\log^ 2n)}$。我们的主要观点是,一个连通的$P_t$自由图总是包含一个顶点$w$,它的邻域相交,对于binom{v (G)}{2}$中的一对$\{u,v\} \的常数分数,诱导的$u-v$路径的常数分数。由于一个$P_t$自由的图总共包含$\mathcal{O}(n^{t-1})$条诱导路径,在这样一个顶点上分支并在连接的分量上独立递归导致一个拟多项式的运行时间边界。我们还证明了同样的方法可以用于获得相关问题的拟多项式时间算法,包括最大权重诱导匹配和3-着色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信