{"title":"An Overview of Plant Phenolics and Their Involvement in Abiotic Stress Tolerance","authors":"K. Kumar, P. Debnath, S. Singh, Navin Kumar","doi":"10.3390/stresses3030040","DOIUrl":null,"url":null,"abstract":"Secondary metabolites, such as phenols and salicylic, play a crucial role in the regulation of development and tolerance mechanisms against a wide range of stresses. During adverse conditions such as biotic and abiotic stresses, plants induce the biosynthesis of phenolic compounds to provide tolerance. Phenolics are secondary aromatic metabolites synthesized through the shikimate/phenylpropanoid pathway or polyketide acetate/malonate pathway, which produce monomeric and polymeric phenolics. Phenolic compounds in plants not only take part in preventing stresses but also in regulating physiological activities. These compounds significantly regulate both below- and above-ground defense mechanisms. Plants synthesize thousands of phenolic compounds throughout their evolution to survive in changing environments. Environmental factors, such as high light, cold, drought, heavy metals, etc., increase the accumulation of phenolics to neutralize any toxic effects. This review focuses on the biosynthesis of phenolic compounds and their updated studies against abiotic stresses.","PeriodicalId":54759,"journal":{"name":"Journal of Thermal Stresses","volume":"70 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Stresses","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/stresses3030040","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 3
Abstract
Secondary metabolites, such as phenols and salicylic, play a crucial role in the regulation of development and tolerance mechanisms against a wide range of stresses. During adverse conditions such as biotic and abiotic stresses, plants induce the biosynthesis of phenolic compounds to provide tolerance. Phenolics are secondary aromatic metabolites synthesized through the shikimate/phenylpropanoid pathway or polyketide acetate/malonate pathway, which produce monomeric and polymeric phenolics. Phenolic compounds in plants not only take part in preventing stresses but also in regulating physiological activities. These compounds significantly regulate both below- and above-ground defense mechanisms. Plants synthesize thousands of phenolic compounds throughout their evolution to survive in changing environments. Environmental factors, such as high light, cold, drought, heavy metals, etc., increase the accumulation of phenolics to neutralize any toxic effects. This review focuses on the biosynthesis of phenolic compounds and their updated studies against abiotic stresses.
期刊介绍:
The first international journal devoted exclusively to the subject, Journal of Thermal Stresses publishes refereed articles on the theoretical and industrial applications of thermal stresses. Intended as a forum for those engaged in analytic as well as experimental research, this monthly journal includes papers on mathematical and practical applications. Emphasis is placed on new developments in thermoelasticity, thermoplasticity, and theory and applications of thermal stresses. Papers on experimental methods and on numerical methods, including finite element methods, are also published.