Advanced nanoengineering strategies endow high‐performance layered transition‐metal oxide cathodes for sodium‐ion batteries

SmartMat Pub Date : 2023-05-08 DOI:10.1002/smm2.1211
Jun Xiao, Yang Xiao, Jiayi Li, Cheng Gong, Xinming Nie, Hong Gao, Bing Sun, Hao Liu, Guoxiu Wang
{"title":"Advanced nanoengineering strategies endow high‐performance layered transition‐metal oxide cathodes for sodium‐ion batteries","authors":"Jun Xiao, Yang Xiao, Jiayi Li, Cheng Gong, Xinming Nie, Hong Gao, Bing Sun, Hao Liu, Guoxiu Wang","doi":"10.1002/smm2.1211","DOIUrl":null,"url":null,"abstract":"Considering the abundance and low price of sodium, sodium‐ion batteries (SIBs) have shown great potential as an alternative to existing lithium‐based batteries in large‐scale energy storage systems, including electric automobiles and smart grids. Cathode materials, which largely decide the cost and the electrochemical performance of the full SIBs, have been extensively studied. Among the reported cathodes, layered transition‐metal oxides (LTMOs) are regarded as the most extremely promising candidates for the commercial application of the SIBs owing to their high specific capacity, superior redox potential, and suitable scalable preparation. Nevertheless, irreversible structural evolution, sluggish kinetics, and water sensitivity are still the critical bottlenecks for their practical utilization. Nanoengineering may offer an opportunity to address the above issues by increasing reactivity, shortening diffusion pathways, and strengthening structural stability. Herein, a comprehensive summary of the modification strategies for LTMOs is presented, emphasizing optimizing the structure, restraining detrimental phase transition, and promoting diffusion kinetics. This review intends to facilitate an in‐depth understanding of structure–composition–property correlation and offer guidance to the further development of the LTMO cathodes for next‐generation energy storage systems.","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SmartMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smm2.1211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Considering the abundance and low price of sodium, sodium‐ion batteries (SIBs) have shown great potential as an alternative to existing lithium‐based batteries in large‐scale energy storage systems, including electric automobiles and smart grids. Cathode materials, which largely decide the cost and the electrochemical performance of the full SIBs, have been extensively studied. Among the reported cathodes, layered transition‐metal oxides (LTMOs) are regarded as the most extremely promising candidates for the commercial application of the SIBs owing to their high specific capacity, superior redox potential, and suitable scalable preparation. Nevertheless, irreversible structural evolution, sluggish kinetics, and water sensitivity are still the critical bottlenecks for their practical utilization. Nanoengineering may offer an opportunity to address the above issues by increasing reactivity, shortening diffusion pathways, and strengthening structural stability. Herein, a comprehensive summary of the modification strategies for LTMOs is presented, emphasizing optimizing the structure, restraining detrimental phase transition, and promoting diffusion kinetics. This review intends to facilitate an in‐depth understanding of structure–composition–property correlation and offer guidance to the further development of the LTMO cathodes for next‐generation energy storage systems.
先进的纳米工程技术为钠离子电池提供了高性能的层状过渡金属氧化物阴极
考虑到钠的丰富和低廉的价格,钠离子电池(sib)作为现有锂基电池的替代品,在包括电动汽车和智能电网在内的大规模能源存储系统中显示出巨大的潜力。阴极材料在很大程度上决定了全sib的成本和电化学性能,因此得到了广泛的研究。在已报道的阴极中,层状过渡金属氧化物(LTMOs)由于其高比容量、优越的氧化还原电位和合适的可扩展制备而被认为是sib商业应用最有前途的候选者。然而,不可逆的结构演变、缓慢的动力学和水敏感性仍然是其实际应用的关键瓶颈。纳米工程可以通过增加反应性、缩短扩散途径和加强结构稳定性来提供解决上述问题的机会。本文对LTMOs的改性策略进行了全面总结,强调优化结构,抑制有害相变,促进扩散动力学。本文综述旨在促进对结构-组成-性能相关性的深入理解,并为下一代储能系统中LTMO阴极的进一步开发提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信