A generalization for the expected value of the earth mover’s distance

William Q. Erickson
{"title":"A generalization for the expected value of the\nearth mover’s distance","authors":"William Q. Erickson","doi":"10.2140/astat.2021.12.139","DOIUrl":null,"url":null,"abstract":"The earth mover's distance (EMD), also called the first Wasserstein distance, can be naturally extended to compare arbitrarily many probability distributions, rather than only two, on the set $[n]=\\{1,\\dots,n\\}$. We present the details for this generalization, along with a highly efficient algorithm inspired by combinatorics; it turns out that in the special case of three distributions, the EMD is half the sum of the pairwise EMD's. Extending the methods of Bourn and Willenbring (arXiv:1903.03673), we compute the expected value of this generalized EMD on random $d$-tuples of distributions, using a generating function which coincides with the Hilbert series of the Segre embedding. We then use the EMD to analyze a real-world data set of grade distributions.","PeriodicalId":41066,"journal":{"name":"Journal of Algebraic Statistics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/astat.2021.12.139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The earth mover's distance (EMD), also called the first Wasserstein distance, can be naturally extended to compare arbitrarily many probability distributions, rather than only two, on the set $[n]=\{1,\dots,n\}$. We present the details for this generalization, along with a highly efficient algorithm inspired by combinatorics; it turns out that in the special case of three distributions, the EMD is half the sum of the pairwise EMD's. Extending the methods of Bourn and Willenbring (arXiv:1903.03673), we compute the expected value of this generalized EMD on random $d$-tuples of distributions, using a generating function which coincides with the Hilbert series of the Segre embedding. We then use the EMD to analyze a real-world data set of grade distributions.
推土器距离期望值的概化
在集合$[n]=\{1,\dots,n\}$上,推土机的距离(EMD),也称为第一Wasserstein距离,可以自然地扩展到比较任意多个概率分布,而不仅仅是两个。我们介绍了这种泛化的细节,以及受组合学启发的高效算法;在三个分布的特殊情况下,EMD是成对EMD之和的一半。我们扩展了Bourn和Willenbring (arXiv:1903.03673)的方法,使用与Segre嵌入的Hilbert级数一致的生成函数,计算了该广义EMD在随机分布$d$元组上的期望值。然后,我们使用EMD来分析真实世界的等级分布数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebraic Statistics
Journal of Algebraic Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信