Multiple Dye Doped Core-Shell Silica Nanoparticles: Outstanding Stability and Signal Intensity Exploiting FRET Phenomenon for Biomedical Applications

C. Pellegrino, A. Volpe, R. Juris, M. Menna, V. Calabrese, F. Sola, C. Barattini, A. Ventola
{"title":"Multiple Dye Doped Core-Shell Silica Nanoparticles: Outstanding Stability and Signal Intensity Exploiting FRET Phenomenon for Biomedical Applications","authors":"C. Pellegrino, A. Volpe, R. Juris, M. Menna, V. Calabrese, F. Sola, C. Barattini, A. Ventola","doi":"10.4172/2324-8777.S6-003","DOIUrl":null,"url":null,"abstract":"We present a one-pot synthesis of core-shell silica nanoparticles (SiNPs) as a novel fluorescent probe for biological applications. SiNPs were doped with a different number of dyes to ensure high efficiency Fluorescence Resonance Energy Transfer (FRET). Dyes are individually entrapped in the silica core without a covalent bonding between them. The strong interconnection achieved inside the core, a FRET with efficiency up to 86% was obtained. Nanoparticles called NTB530, NTB575 and NTB660 contain two, three and four different dyes respectively. Nanoparticles can be excited with a common blue laser and characterized by a long Stokes Shift up to the near-IR emission. Photostability, tested under continuous irradiation with a mercury lamp, showed higher stability of our Nanoparticles compared to commercial dyes like Fluorescein and R-Phycoerythrin. To prove the potential application of our Nanoparticle in flow-cytometry, they were conjugated with Anti-Human CD8 antibody and tested in comparison with commercial ones.","PeriodicalId":16457,"journal":{"name":"Journal of Nanomaterials & Molecular Nanotechnology","volume":"123 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomaterials & Molecular Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2324-8777.S6-003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We present a one-pot synthesis of core-shell silica nanoparticles (SiNPs) as a novel fluorescent probe for biological applications. SiNPs were doped with a different number of dyes to ensure high efficiency Fluorescence Resonance Energy Transfer (FRET). Dyes are individually entrapped in the silica core without a covalent bonding between them. The strong interconnection achieved inside the core, a FRET with efficiency up to 86% was obtained. Nanoparticles called NTB530, NTB575 and NTB660 contain two, three and four different dyes respectively. Nanoparticles can be excited with a common blue laser and characterized by a long Stokes Shift up to the near-IR emission. Photostability, tested under continuous irradiation with a mercury lamp, showed higher stability of our Nanoparticles compared to commercial dyes like Fluorescein and R-Phycoerythrin. To prove the potential application of our Nanoparticle in flow-cytometry, they were conjugated with Anti-Human CD8 antibody and tested in comparison with commercial ones.
多染料掺杂核壳二氧化硅纳米颗粒:突出的稳定性和信号强度利用FRET现象的生物医学应用
我们提出了一种一锅合成的核壳二氧化硅纳米颗粒(SiNPs)作为一种新型荧光探针的生物应用。为了保证高效的荧光共振能量转移(FRET), SiNPs掺杂了不同数量的染料。染料单独被包裹在硅芯中,它们之间没有共价键。在核心内部实现了强互连,获得了效率高达86%的FRET。被称为NTB530、NTB575和NTB660的纳米颗粒分别含有两种、三种和四种不同的染料。纳米粒子可以用普通的蓝色激光激发,其特征是长斯托克斯位移到近红外发射。在汞灯连续照射下进行的光稳定性测试表明,与荧光素和r -藻红蛋白等商业染料相比,我们的纳米颗粒具有更高的稳定性。为了证明我们的纳米颗粒在流式细胞术中的潜在应用,我们将它们与抗人CD8抗体结合,并与商业化的纳米颗粒进行了比较测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信