Nonexistence of NNSC fill-ins with large mean curvature

P. Miao
{"title":"Nonexistence of NNSC fill-ins with large mean curvature","authors":"P. Miao","doi":"10.1090/proc/15400","DOIUrl":null,"url":null,"abstract":"In this note we show that a closed Riemannian manifold does not admit a fill-in with nonnegative scalar curvature if the mean curvature is point-wise large. Similar result also holds for fill-ins with a negative scalar curvature lower bound.","PeriodicalId":8430,"journal":{"name":"arXiv: Differential Geometry","volume":"178 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/proc/15400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this note we show that a closed Riemannian manifold does not admit a fill-in with nonnegative scalar curvature if the mean curvature is point-wise large. Similar result also holds for fill-ins with a negative scalar curvature lower bound.
具有大平均曲率的NNSC填充的不存在性
在这篇笔记中,我们证明了一个封闭黎曼流形不允许用非负标量曲率填充,如果平均曲率在点方向上很大。类似的结果也适用于具有负标量曲率下界的填充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信