Engineering Charts for Predicting Breakdown Pressure for Finite-Length Wellbore Intervals

Yanhui Han, Shengli Chen, Y. Abousleiman
{"title":"Engineering Charts for Predicting Breakdown Pressure for Finite-Length Wellbore Intervals","authors":"Yanhui Han, Shengli Chen, Y. Abousleiman","doi":"10.2118/204907-ms","DOIUrl":null,"url":null,"abstract":"\n In wellbore drilling, the drilling mud density needs to be carefully selected such that the mud pressure inside the wellbore will not exceed formation breakdown pressure to avoid wellbore fracturing and extensive mud losses. However, in the hydraulic fracturing treatment, the lesser the value of the formation breakdown pressure the more optimal is the operation. We found out in this study that the pumping schedule (e.g., pumping duration and pumping rate) are factors in optimizing the breakdown pressure. In addition, this work investigates the effects of the finite length between packers on the magnitude of the breakdown pressure in various geological formations. The time-dependent evolving stresses around the wellbore are solved in the framework of time-dependent poroelasticity theory. The breakdown pressure is predicted from the evolution of the circumferential effective stresses. The effects of injection rate, formation properties, borehole diameter and length, and pumping duration on the breakdown pressure are presented in the form of engineering charts, for representative in-situ stress.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"32 1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Tue, November 30, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204907-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In wellbore drilling, the drilling mud density needs to be carefully selected such that the mud pressure inside the wellbore will not exceed formation breakdown pressure to avoid wellbore fracturing and extensive mud losses. However, in the hydraulic fracturing treatment, the lesser the value of the formation breakdown pressure the more optimal is the operation. We found out in this study that the pumping schedule (e.g., pumping duration and pumping rate) are factors in optimizing the breakdown pressure. In addition, this work investigates the effects of the finite length between packers on the magnitude of the breakdown pressure in various geological formations. The time-dependent evolving stresses around the wellbore are solved in the framework of time-dependent poroelasticity theory. The breakdown pressure is predicted from the evolution of the circumferential effective stresses. The effects of injection rate, formation properties, borehole diameter and length, and pumping duration on the breakdown pressure are presented in the form of engineering charts, for representative in-situ stress.
预测有限井筒段破裂压力的工程图
在井筒钻井中,需要仔细选择钻井泥浆密度,使井筒内泥浆压力不超过地层破裂压力,以避免井筒破裂和大面积泥浆漏失。然而,在水力压裂处理中,地层破裂压力值越小,则越优选。在本研究中,我们发现泵送计划(例如泵送时间和泵送速率)是优化击穿压力的因素。此外,本文还研究了不同地质构造中封隔器之间的有限长度对破裂压力大小的影响。在时效孔隙弹性理论框架下求解井筒周围随时间变化的演化应力。通过周向有效应力的演化来预测破裂压力。以工程图的形式给出了注入速率、地层性质、井径和井长、泵送时间等因素对破裂压力的影响,作为地应力的代表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信