One-Parameter Third-Order Iterative Methods for Solving Nonlinear Equations

J. An, Yuan Yuan
{"title":"One-Parameter Third-Order Iterative Methods for Solving Nonlinear Equations","authors":"J. An, Yuan Yuan","doi":"10.1109/ICIC.2011.88","DOIUrl":null,"url":null,"abstract":"In this paper, we present a modification of the two-step Newton's method which produces a class of one-parameter iterative methods for solving nonlinear equations. An interpolating polynomial is constructed to avoid the evaluation of derivative. The convergence analysis shows that the new methods are third-order convergent and require one function and two first derivative evaluations per iteration. Several numerical examples are given to illustrate the performance of the presented methods.","PeriodicalId":6397,"journal":{"name":"2011 Fourth International Conference on Information and Computing","volume":"3 1","pages":"223-225"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Information and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIC.2011.88","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we present a modification of the two-step Newton's method which produces a class of one-parameter iterative methods for solving nonlinear equations. An interpolating polynomial is constructed to avoid the evaluation of derivative. The convergence analysis shows that the new methods are third-order convergent and require one function and two first derivative evaluations per iteration. Several numerical examples are given to illustrate the performance of the presented methods.
求解非线性方程的单参数三阶迭代法
本文给出了对两步牛顿法的一种改进,得到了求解非线性方程的一类单参数迭代方法。构造了插值多项式,避免了求导的求值。收敛性分析表明,新方法具有三阶收敛性,且每次迭代只需要一个函数和两次一阶导数求值。数值算例说明了所提方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信