J. Yunas, N. H. Mohd Yunus, J. Sampe, A. Nandiyanto
{"title":"Design and Fabrication of Glass based MEMS Patch Antenna for Energy Harvester","authors":"J. Yunas, N. H. Mohd Yunus, J. Sampe, A. Nandiyanto","doi":"10.1109/PECon48942.2020.9314395","DOIUrl":null,"url":null,"abstract":"This paper describes the design and fabrication of MEMS patch antenna fabricated on glass substrate for RF energy harvester system. The idea was derived from the great property of glass, such as transparency, high mechanical surface strength and good dielectric property that is predicted to replace the conventional and silicon semiconductor material as the substrate for an RF energy capture. Aim of the study is to develop MEMS patch antenna that should be compatible with 180 nm CMOS process. The antenna device consists of a substrate, slotted petal conductor, ground plane and impedance matched output slot. The substrate is made of pyrex glass and fabricated using a surface micromachine process technique. The fabricated device is then measured in an anechoic chamber and compared with other antenna made of silicon and standard conventional antenna substrate. The results show that the patch antenna on glass performs similar to the conventional antenna fabricated on RT/Duroid that show very promising alternative substrate material for an energy harvester system where size, weight, cost, performance, ease of installation and fabrication are constrains.","PeriodicalId":6768,"journal":{"name":"2020 IEEE International Conference on Power and Energy (PECon)","volume":"180 1","pages":"362-365"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Power and Energy (PECon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECon48942.2020.9314395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper describes the design and fabrication of MEMS patch antenna fabricated on glass substrate for RF energy harvester system. The idea was derived from the great property of glass, such as transparency, high mechanical surface strength and good dielectric property that is predicted to replace the conventional and silicon semiconductor material as the substrate for an RF energy capture. Aim of the study is to develop MEMS patch antenna that should be compatible with 180 nm CMOS process. The antenna device consists of a substrate, slotted petal conductor, ground plane and impedance matched output slot. The substrate is made of pyrex glass and fabricated using a surface micromachine process technique. The fabricated device is then measured in an anechoic chamber and compared with other antenna made of silicon and standard conventional antenna substrate. The results show that the patch antenna on glass performs similar to the conventional antenna fabricated on RT/Duroid that show very promising alternative substrate material for an energy harvester system where size, weight, cost, performance, ease of installation and fabrication are constrains.