Perceptual dissimilarity metric: A full reference objective image quality measure to quantify the degradation of perceptual image quality

Sajib Saha, M. Tahtali, A. Lambert, M. Pickering
{"title":"Perceptual dissimilarity metric: A full reference objective image quality measure to quantify the degradation of perceptual image quality","authors":"Sajib Saha, M. Tahtali, A. Lambert, M. Pickering","doi":"10.1109/ISSPIT.2013.6781902","DOIUrl":null,"url":null,"abstract":"This paper introduces a full reference objective image quality measure to quantify the degradation of perceptual image quality. Objective methods for assessing perceptual image quality are important for many image processing applications, such as monitoring and controlling image quality for quality control systems, benchmarking image processing systems and so on. The novel image quality metric proposed in this paper uses a relatively small number of pair-wise intensity comparisons to represent a patch as binary string, then compares corresponding patches using Hamming distances. It then calculates a dissimilarity value between images as an average of the Hamming distances computed between patches. The proposed metric is more consistent with human visual system and thus outperforms other existing and widely used metrics, namely the root mean square error (RMSE) and structural similarity index (SSIM). The computational cost of the proposed metric is also less compared to the state-of-the-art method.","PeriodicalId":88960,"journal":{"name":"Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology. IEEE International Symposium on Signal Processing and Information Technology","volume":"172 1","pages":"000327-000332"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE International Symposium on Signal Processing and Information Technology. IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2013.6781902","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper introduces a full reference objective image quality measure to quantify the degradation of perceptual image quality. Objective methods for assessing perceptual image quality are important for many image processing applications, such as monitoring and controlling image quality for quality control systems, benchmarking image processing systems and so on. The novel image quality metric proposed in this paper uses a relatively small number of pair-wise intensity comparisons to represent a patch as binary string, then compares corresponding patches using Hamming distances. It then calculates a dissimilarity value between images as an average of the Hamming distances computed between patches. The proposed metric is more consistent with human visual system and thus outperforms other existing and widely used metrics, namely the root mean square error (RMSE) and structural similarity index (SSIM). The computational cost of the proposed metric is also less compared to the state-of-the-art method.
感知不相似度度量:一个完整的参考客观图像质量度量来量化感知图像质量的退化
本文介绍了一种完全参考的客观图像质量度量来量化感知图像质量的退化。评价感知图像质量的客观方法对于许多图像处理应用非常重要,例如对质量控制系统的图像质量监测和控制,对图像处理系统进行基准测试等。本文提出的新图像质量度量使用相对较少的成对强度比较来将patch表示为二进制字符串,然后使用汉明距离对相应的patch进行比较。然后,它计算图像之间的不相似值,作为补丁之间计算的汉明距离的平均值。该度量更符合人类视觉系统,因此优于其他现有和广泛使用的度量,即均方根误差(RMSE)和结构相似度指数(SSIM)。与最先进的方法相比,所提出的度量的计算成本也更少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信