F. Romagnoli, Alessandro Thedy, Baiba Ievina, Maksims Feofilovs
{"title":"Life Cycle Assessment of an Innovative Microalgae Cultivation System in the Baltic Region: Results from SMORP Project","authors":"F. Romagnoli, Alessandro Thedy, Baiba Ievina, Maksims Feofilovs","doi":"10.2478/rtuect-2023-0010","DOIUrl":null,"url":null,"abstract":"Abstract Microalgae cultivation at biogas plants creates joint benefits for using liquid digestate and exhaust gas from the CHP unit as nutrient and carbon sources for microalgae growing. This circular approach increases biogas production’s sustainability towards a bioeconomy and zero-waste perspective. This study aims to evaluate the potential environmental impacts in connection to a novel microalgae growing technology named Stacked Modular Open Raceway Pond (SMORP) as a side-stream process coupled with centrate and exhaust gases from a biogas plant. A comparative LCA according to ISO 14044 is performed between the innovative SMORP concept at the pilot level and a hypothetical scaled-up system. Primary data for the inventory are directly gathered from the microalgae growing test performed at the biosystems laboratory of the Institute of Energy Systems and Environment of the Riga Technical University. Secondary data are collected from literature mostly in terms of mass and energy balances considering the SMORP pilot project design. The results of the LCA include the main findings both at mid and endpoint categories according to the IMPACT 2002+ method. In addition, a sensitivity analysis for several different parameters has been investigated. Results show the feasibility of the coupled system and the possibility of having benefits once the system is scaled up. Nevertheless, the results show a critical dependency of the environmental performance on the local conditions, potentially affecting too high cultivation costs.","PeriodicalId":46053,"journal":{"name":"Environmental and Climate Technologies","volume":"124 1","pages":"117 - 136"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental and Climate Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/rtuect-2023-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract Microalgae cultivation at biogas plants creates joint benefits for using liquid digestate and exhaust gas from the CHP unit as nutrient and carbon sources for microalgae growing. This circular approach increases biogas production’s sustainability towards a bioeconomy and zero-waste perspective. This study aims to evaluate the potential environmental impacts in connection to a novel microalgae growing technology named Stacked Modular Open Raceway Pond (SMORP) as a side-stream process coupled with centrate and exhaust gases from a biogas plant. A comparative LCA according to ISO 14044 is performed between the innovative SMORP concept at the pilot level and a hypothetical scaled-up system. Primary data for the inventory are directly gathered from the microalgae growing test performed at the biosystems laboratory of the Institute of Energy Systems and Environment of the Riga Technical University. Secondary data are collected from literature mostly in terms of mass and energy balances considering the SMORP pilot project design. The results of the LCA include the main findings both at mid and endpoint categories according to the IMPACT 2002+ method. In addition, a sensitivity analysis for several different parameters has been investigated. Results show the feasibility of the coupled system and the possibility of having benefits once the system is scaled up. Nevertheless, the results show a critical dependency of the environmental performance on the local conditions, potentially affecting too high cultivation costs.
期刊介绍:
Environmental and Climate Technologies provides a forum for information on innovation, research and development in the areas of environmental science, energy resources and processes, innovative technologies and energy efficiency. Authors are encouraged to submit manuscripts which cover the range from bioeconomy, sustainable technology development, life cycle analysis, eco-design, climate change mitigation, innovative solutions for pollution reduction to resilience, the energy efficiency of buildings, secure and sustainable energy supplies. The Journal ensures international publicity for original research and innovative work. A variety of themes are covered through a multi-disciplinary approach, one which integrates all aspects of environmental science: -Sustainability of technology development- Bioeconomy- Cleaner production, end of pipe production- Zero emission technologies- Eco-design- Life cycle analysis- Eco-efficiency- Environmental impact assessment- Environmental management systems- Resilience- Energy and carbon markets- Greenhouse gas emission reduction and climate technologies- Methodologies for the evaluation of sustainability- Renewable energy resources- Solar, wind, geothermal, hydro energy, biomass sources: algae, wood, straw, biogas, energetic plants and organic waste- Waste management- Quality of outdoor and indoor environment- Environmental monitoring and evaluation- Heat and power generation, including district heating and/or cooling- Energy efficiency.