SimLDA: A tool for topic model evaluation

Rebecca M. C. Taylor, J. D. Preez
{"title":"SimLDA: A tool for topic model evaluation","authors":"Rebecca M. C. Taylor, J. D. Preez","doi":"10.48550/arXiv.2208.09299","DOIUrl":null,"url":null,"abstract":"Variational Bayes (VB) applied to latent Dirichlet allocation (LDA) has become the most popular algorithm for aspect modeling. While sufficiently successful in text topic extraction from large corpora, VB is less successful in identifying aspects in the presence of limited data. We present a novel variational message passing algorithm as applied to Latent Dirichlet Allocation (LDA) and compare it with the gold standard VB and collapsed Gibbs sampling. In situations where marginalisation leads to non-conjugate messages, we use ideas from sampling to derive approximate update equations. In cases where conjugacy holds, Loopy Belief update (LBU) (also known as Lauritzen-Spiegelhalter) is used. Our algorithm, ALBU (approximate LBU), has strong similarities with Variational Message Passing (VMP) (which is the message passing variant of VB). To compare the performance of the algorithms in the presence of limited data, we use data sets consisting of tweets and news groups. Using coherence measures we show that ALBU learns latent distributions more accurately than does VB, especially for smaller data sets.","PeriodicalId":93362,"journal":{"name":"Proceedings of the Future Technologies Conference (FTC) 2020. Future Technologies Conference (2020 : Online)","volume":"148 1","pages":"534-554"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Future Technologies Conference (FTC) 2020. Future Technologies Conference (2020 : Online)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2208.09299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Variational Bayes (VB) applied to latent Dirichlet allocation (LDA) has become the most popular algorithm for aspect modeling. While sufficiently successful in text topic extraction from large corpora, VB is less successful in identifying aspects in the presence of limited data. We present a novel variational message passing algorithm as applied to Latent Dirichlet Allocation (LDA) and compare it with the gold standard VB and collapsed Gibbs sampling. In situations where marginalisation leads to non-conjugate messages, we use ideas from sampling to derive approximate update equations. In cases where conjugacy holds, Loopy Belief update (LBU) (also known as Lauritzen-Spiegelhalter) is used. Our algorithm, ALBU (approximate LBU), has strong similarities with Variational Message Passing (VMP) (which is the message passing variant of VB). To compare the performance of the algorithms in the presence of limited data, we use data sets consisting of tweets and news groups. Using coherence measures we show that ALBU learns latent distributions more accurately than does VB, especially for smaller data sets.
将变分贝叶斯(VB)应用于潜在狄利克雷分配(LDA)已成为最流行的方面建模算法。虽然在从大型语料库中提取文本主题方面取得了足够的成功,但在有限数据的情况下,VB在识别方面就不那么成功了。提出了一种新的用于潜在狄利克雷分配(LDA)的变分消息传递算法,并将其与金标准VB和崩溃吉布斯抽样进行了比较。在边缘化导致非共轭信息的情况下,我们使用抽样的思想来推导近似的更新方程。在共轭存在的情况下,使用循环信念更新(LBU)(也称为Lauritzen-Spiegelhalter)。我们的算法ALBU(近似LBU)与变分消息传递(VMP) (VB的消息传递变体)有很强的相似性。为了比较算法在有限数据下的性能,我们使用由tweet和新闻组组成的数据集。使用相干度量,我们表明ALBU比VB更准确地学习潜在分布,特别是对于较小的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信