{"title":"Relativistic hydrodynamics with momentum-dependent relaxation time","authors":"Sukanya Mitra","doi":"10.1103/PHYSREVC.103.014905","DOIUrl":null,"url":null,"abstract":"A second order relativistic hydrodynamic theory has been derived using momentum dependent relaxation time in the relativistic transport equation. In order to do that, an iterative technique of gradient expansion approach, namely Chapman-Enskog (CE) expansion of the particle distribution function has been employed. The key findings of this work are, (i) momentum dependent relaxation time in collision term results in an extended Landau matching condition for the thermodynamic variables, (ii) the result from numerical solution of Boltzmann equation lies somewhere in between the two popular extreme limits : linear and quadratic ansatz, indicating a fractional power of momentum dependence in relaxation time to be appropriate, (ii) an equivalence has been established between the iterative gradient expansion method like CE and the well known moment approach like Grad's 14-moment method.","PeriodicalId":8463,"journal":{"name":"arXiv: Nuclear Theory","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Nuclear Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVC.103.014905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
A second order relativistic hydrodynamic theory has been derived using momentum dependent relaxation time in the relativistic transport equation. In order to do that, an iterative technique of gradient expansion approach, namely Chapman-Enskog (CE) expansion of the particle distribution function has been employed. The key findings of this work are, (i) momentum dependent relaxation time in collision term results in an extended Landau matching condition for the thermodynamic variables, (ii) the result from numerical solution of Boltzmann equation lies somewhere in between the two popular extreme limits : linear and quadratic ansatz, indicating a fractional power of momentum dependence in relaxation time to be appropriate, (ii) an equivalence has been established between the iterative gradient expansion method like CE and the well known moment approach like Grad's 14-moment method.