A framework for learning query concepts in image classification

A. L. Ratan, O. Maron, W. Grimson, Tomas Lozano-Perez
{"title":"A framework for learning query concepts in image classification","authors":"A. L. Ratan, O. Maron, W. Grimson, Tomas Lozano-Perez","doi":"10.1109/CVPR.1999.786973","DOIUrl":null,"url":null,"abstract":"In this paper, we adapt the Multiple Instance Learning paradigm using the Diverse Density algorithm as a way of modeling the ambiguity in images in order to learn \"visual concepts\" that can be used to classify new images. In this framework, a user labels an image as positive if the image contains the concept. Each example image is a bag of instances (sub-images) where only the bag is labeled-not the individual instances (sub-images). From a small collection of positive and negative examples, the system learns the concept and uses it to retrieve images that contain the concept from a large database. The learned \"concepts\" are simple templates that capture the color, texture and spatial properties of the class of images. We introduced this method earlier in the domain of natural scene classification using simple, low resolution sub-images as instances. In this paper, we extend the bag generator (the mechanism which takes an image and generates a set of instances) to generate more complex instances using multiple cues on segmented high resolution images. We show that this method can be used to learn certain object class concepts (e.g. cars) in addition, to natural scenes.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"27 1","pages":"423-429 Vol. 1"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"83","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.786973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 83

Abstract

In this paper, we adapt the Multiple Instance Learning paradigm using the Diverse Density algorithm as a way of modeling the ambiguity in images in order to learn "visual concepts" that can be used to classify new images. In this framework, a user labels an image as positive if the image contains the concept. Each example image is a bag of instances (sub-images) where only the bag is labeled-not the individual instances (sub-images). From a small collection of positive and negative examples, the system learns the concept and uses it to retrieve images that contain the concept from a large database. The learned "concepts" are simple templates that capture the color, texture and spatial properties of the class of images. We introduced this method earlier in the domain of natural scene classification using simple, low resolution sub-images as instances. In this paper, we extend the bag generator (the mechanism which takes an image and generates a set of instances) to generate more complex instances using multiple cues on segmented high resolution images. We show that this method can be used to learn certain object class concepts (e.g. cars) in addition, to natural scenes.
图像分类中查询概念学习的框架
在本文中,我们采用多实例学习范式,使用不同密度算法作为对图像中的模糊性建模的一种方式,以学习可用于分类新图像的“视觉概念”。在这个框架中,如果图像包含这个概念,则用户将其标记为正面。每个示例图像都是一个实例包(子图像),其中只标记了实例包,而不标记单个实例(子图像)。从一小部分正面和负面的例子中,系统学习这个概念,并用它从一个大的数据库中检索包含这个概念的图像。学习到的“概念”是简单的模板,用于捕获图像类的颜色、纹理和空间属性。我们之前在自然场景分类领域使用简单、低分辨率的子图像作为实例介绍了这种方法。在本文中,我们扩展了bag生成器(获取图像并生成一组实例的机制),以便在分割的高分辨率图像上使用多个线索生成更复杂的实例。我们表明,除了自然场景之外,这种方法还可以用于学习某些对象类概念(例如汽车)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信