Printing and characterization of three-dimensional high-loaded nanocomposites structures

Corrado Sciancalepore, Federica Bondioli, Massimo Messori, Daniel Milanese
{"title":"Printing and characterization of three-dimensional high-loaded nanocomposites structures","authors":"Corrado Sciancalepore,&nbsp;Federica Bondioli,&nbsp;Massimo Messori,&nbsp;Daniel Milanese","doi":"10.1002/mdp2.256","DOIUrl":null,"url":null,"abstract":"<p>This study demonstrates the feasibility of fabricating by additive manufacturing composite objects based on acrylic hybrid photocurable formulations, containing 45% by weight of silica nanoparticles, with an average size of about 30 nm. A commercial stereolithography apparatus was used to selectively cure, layer by layer, the high-loaded acrylic resin. The presence of the filler determines an increase in the physical and mechanical properties of the samples that become significantly stiffer and stronger than the pristine matrix. Dynamic mechanical analysis performed on the printed samples gave promising results for the use of developed formulation in the realization of three-dimensional (3D) polymeric structures with improved mechanical properties.</p>","PeriodicalId":100886,"journal":{"name":"Material Design & Processing Communications","volume":"3 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/mdp2.256","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Design & Processing Communications","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mdp2.256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This study demonstrates the feasibility of fabricating by additive manufacturing composite objects based on acrylic hybrid photocurable formulations, containing 45% by weight of silica nanoparticles, with an average size of about 30 nm. A commercial stereolithography apparatus was used to selectively cure, layer by layer, the high-loaded acrylic resin. The presence of the filler determines an increase in the physical and mechanical properties of the samples that become significantly stiffer and stronger than the pristine matrix. Dynamic mechanical analysis performed on the printed samples gave promising results for the use of developed formulation in the realization of three-dimensional (3D) polymeric structures with improved mechanical properties.

三维高载荷纳米复合材料结构的打印与表征
本研究证明了采用增材制造技术制备丙烯酸混合光固化复合材料的可行性,该复合材料含有45%重量的二氧化硅纳米颗粒,平均尺寸约为30 nm。利用商用立体光刻设备,对高负载丙烯酸树脂进行了层接层的选择性固化。填料的存在决定了样品的物理和机械性能的增加,变得明显比原始基体更硬和更强。对打印样品进行的动态力学分析为使用开发的配方实现具有改进机械性能的三维(3D)聚合物结构提供了有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信