{"title":"Is the Variance Swap Rate Affine in the Spot Variance? Evidence from S&P500 Data","authors":"M. Mancino, Simone Scotti, Giacomo Toscano","doi":"10.2139/ssrn.3571429","DOIUrl":null,"url":null,"abstract":"ABSTRACT We empirically investigate the functional link between the variance swap rate and the spot variance. Using S&P500 data over the period 2006–2018, we find overwhelming empirical evidence supporting the affine link implied by exponential affine stochastic volatility models. Tests on yearly subsamples suggest that exponential mean-reverting variance models provide a good fit during periods of extreme volatility, while polynomial modelsare suited for years characterized by more frequent price jumps.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":"154 1","pages":"288 - 316"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3571429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3
Abstract
ABSTRACT We empirically investigate the functional link between the variance swap rate and the spot variance. Using S&P500 data over the period 2006–2018, we find overwhelming empirical evidence supporting the affine link implied by exponential affine stochastic volatility models. Tests on yearly subsamples suggest that exponential mean-reverting variance models provide a good fit during periods of extreme volatility, while polynomial modelsare suited for years characterized by more frequent price jumps.
期刊介绍:
The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.