M. Aida, Takumi Sakiyama, Ayako Hashizume, C. Takano
{"title":"Cluster Structure of Online Users Generated from Interaction Between Fake News and Corrections","authors":"M. Aida, Takumi Sakiyama, Ayako Hashizume, C. Takano","doi":"10.1587/transcom.2022ebp3059","DOIUrl":null,"url":null,"abstract":"SUMMARY The problem caused by fake news continues to worsen in today’s online social networks. Intuitively, it seems effective to issue corrections as a countermeasure. However, corrections can, ironically, strengthen attention to fake news, which worsens the situation. This paper proposes a model for describing the interaction between fake news and the corrections as a reaction-diffusion system; this yields the mechanism by which corrections increase attention to fake news. In this model, the emergence of groups of users who believe in fake news is understood as a Turing pattern that appears in the activator-inhibitor model. Numerical calculations show that even if the network structure has no spatial bias, the interaction between fake news and the corrections creates groups that are strongly interested in discussing fake news. Also, we propose and evaluate a basic strategy to counter fake news.","PeriodicalId":48825,"journal":{"name":"IEICE Transactions on Communications","volume":"67 1","pages":"392-401"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEICE Transactions on Communications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1587/transcom.2022ebp3059","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
SUMMARY The problem caused by fake news continues to worsen in today’s online social networks. Intuitively, it seems effective to issue corrections as a countermeasure. However, corrections can, ironically, strengthen attention to fake news, which worsens the situation. This paper proposes a model for describing the interaction between fake news and the corrections as a reaction-diffusion system; this yields the mechanism by which corrections increase attention to fake news. In this model, the emergence of groups of users who believe in fake news is understood as a Turing pattern that appears in the activator-inhibitor model. Numerical calculations show that even if the network structure has no spatial bias, the interaction between fake news and the corrections creates groups that are strongly interested in discussing fake news. Also, we propose and evaluate a basic strategy to counter fake news.
期刊介绍:
The IEICE Transactions on Communications is an all-electronic journal published occasionally by the Institute of Electronics, Information and Communication Engineers (IEICE) and edited by the Communications Society in IEICE. The IEICE Transactions on Communications publishes original, peer-reviewed papers that embrace the entire field of communications, including:
- Fundamental Theories for Communications
- Energy in Electronics Communications
- Transmission Systems and Transmission Equipment for Communications
- Optical Fiber for Communications
- Fiber-Optic Transmission for Communications
- Network System
- Network
- Internet
- Network Management/Operation
- Antennas and Propagation
- Electromagnetic Compatibility (EMC)
- Wireless Communication Technologies
- Terrestrial Wireless Communication/Broadcasting Technologies
- Satellite Communications
- Sensing
- Navigation, Guidance and Control Systems
- Space Utilization Systems for Communications
- Multimedia Systems for Communication