2-D signal interpolation using subsequence FFT

S. Chan, K. Ho
{"title":"2-D signal interpolation using subsequence FFT","authors":"S. Chan, K. Ho","doi":"10.1109/MWSCAS.1991.252016","DOIUrl":null,"url":null,"abstract":"An efficient 2-D interpolation algorithm is presented which is a 2-D extension of the subsequence approach for 1-D interpolation introduced by K. Prasad and P. Satyanarayana (1986), which avoids the redundant operations in the inverse transform. An improved intermediate sequence is introduced to preserve the Hermitian symmetry when interpolating a real-valued signal. The resulting algorithm is significantly more efficient than the 2-D FFT method of J.W. Adams (1987). It is also more convenient, since it permits the use of the IFFT with a size that is the same as that of the original FFT.<<ETX>>","PeriodicalId":6453,"journal":{"name":"[1991] Proceedings of the 34th Midwest Symposium on Circuits and Systems","volume":"8 2 1","pages":"700-703 vol.2"},"PeriodicalIF":0.0000,"publicationDate":"1991-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings of the 34th Midwest Symposium on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.1991.252016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An efficient 2-D interpolation algorithm is presented which is a 2-D extension of the subsequence approach for 1-D interpolation introduced by K. Prasad and P. Satyanarayana (1986), which avoids the redundant operations in the inverse transform. An improved intermediate sequence is introduced to preserve the Hermitian symmetry when interpolating a real-valued signal. The resulting algorithm is significantly more efficient than the 2-D FFT method of J.W. Adams (1987). It is also more convenient, since it permits the use of the IFFT with a size that is the same as that of the original FFT.<>
基于子序列FFT的二维信号插值
提出了一种有效的二维插值算法,它是K. Prasad和P. Satyanarayana(1986)提出的一维插值的子序列方法的二维扩展,避免了逆变换中的冗余运算。为了在插值实值信号时保持厄米对称,引入了一种改进的中间序列。所得到的算法明显比J.W. Adams(1987)的二维FFT方法更有效。它也更方便,因为它允许使用大小与原始FFT相同的IFFT
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信