Exploring Current Viewing Context for TV Contents Recommendation

Mariem Bambia, M. Boughanem, R. Faiz
{"title":"Exploring Current Viewing Context for TV Contents Recommendation","authors":"Mariem Bambia, M. Boughanem, R. Faiz","doi":"10.1109/WI.2016.0046","DOIUrl":null,"url":null,"abstract":"Due to the diversity of alternative programs to watch and the change of viewers' contexts, real-time prediction of viewers' preferences in certain circumstances becomes increasingly hard. However, most existing TV recommender systems used only current time and location in a heuristic way and ignore other contextual information on which viewers' preferences may depend. This paper proposes a probabilistic approach that incorporates contextual information in order to predict the relevance of TV contents. We consider several viewer's current context elements and integrate them into a probabilistic model. We conduct a comprehensive effectiveness evaluation on a real dataset crawled from Pinhole platform. Experimental results demonstrate that our model outperforms the other context-aware models.","PeriodicalId":6513,"journal":{"name":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","volume":"94 1","pages":"272-279"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/WIC/ACM International Conference on Web Intelligence (WI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2016.0046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Due to the diversity of alternative programs to watch and the change of viewers' contexts, real-time prediction of viewers' preferences in certain circumstances becomes increasingly hard. However, most existing TV recommender systems used only current time and location in a heuristic way and ignore other contextual information on which viewers' preferences may depend. This paper proposes a probabilistic approach that incorporates contextual information in order to predict the relevance of TV contents. We consider several viewer's current context elements and integrate them into a probabilistic model. We conduct a comprehensive effectiveness evaluation on a real dataset crawled from Pinhole platform. Experimental results demonstrate that our model outperforms the other context-aware models.
探索当前电视内容推荐的观看情境
由于可供观看的节目的多样性和观众情境的变化,实时预测观众在特定情况下的偏好变得越来越困难。然而,大多数现有的电视推荐系统仅以启发式方式使用当前时间和位置,而忽略了观众偏好可能依赖的其他上下文信息。本文提出了一种结合语境信息的概率方法来预测电视内容的相关性。我们考虑了几个观看者当前的上下文元素,并将它们集成到一个概率模型中。我们对从Pinhole平台抓取的真实数据集进行了全面的有效性评估。实验结果表明,我们的模型优于其他上下文感知模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信