On endpoint regularity criterion of the 3D Navier–Stokes equations

Zhouyu Li, D. Zhou
{"title":"On endpoint regularity criterion of the 3D Navier–Stokes equations","authors":"Zhouyu Li, D. Zhou","doi":"10.4310/DPDE.2021.V18.N1.A5","DOIUrl":null,"url":null,"abstract":"Let $(u, \\pi)$ with $u=(u_1,u_2,u_3)$ be a suitable weak solution of the three dimensional Navier-Stokes equations in $\\mathbb{R}^3\\times [0, T]$. Denote by $\\dot{\\mathcal{B}}^{-1}_{\\infty,\\infty}$ the closure of $C_0^\\infty$ in $\\dot{B}^{-1}_{\\infty,\\infty}$. We prove that if $u\\in L^\\infty(0, T; \\dot{B}^{-1}_{\\infty,\\infty})$, $u(x, T)\\in \\dot{\\mathcal{B}}^{-1}_{\\infty,\\infty})$, and $u_3\\in L^\\infty(0, T; L^{3, \\infty})$ or $u_3\\in L^\\infty(0, T; \\dot{B}^{-1+3/p}_{p, q})$ with $3<p, q< \\infty$, then $u$ is smooth in $\\mathbb{R}^3\\times [0, T]$. Our result improves a previous result established by Wang and Zhang [Sci. China Math. 60, 637-650 (2017)].","PeriodicalId":8445,"journal":{"name":"arXiv: Analysis of PDEs","volume":"296 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Analysis of PDEs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/DPDE.2021.V18.N1.A5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let $(u, \pi)$ with $u=(u_1,u_2,u_3)$ be a suitable weak solution of the three dimensional Navier-Stokes equations in $\mathbb{R}^3\times [0, T]$. Denote by $\dot{\mathcal{B}}^{-1}_{\infty,\infty}$ the closure of $C_0^\infty$ in $\dot{B}^{-1}_{\infty,\infty}$. We prove that if $u\in L^\infty(0, T; \dot{B}^{-1}_{\infty,\infty})$, $u(x, T)\in \dot{\mathcal{B}}^{-1}_{\infty,\infty})$, and $u_3\in L^\infty(0, T; L^{3, \infty})$ or $u_3\in L^\infty(0, T; \dot{B}^{-1+3/p}_{p, q})$ with $3
三维Navier-Stokes方程的端点正则性准则
设$(u, \pi)$和$u=(u_1,u_2,u_3)$为$\mathbb{R}^3\times [0, T]$中三维Navier-Stokes方程的合适弱解。用$\dot{\mathcal{B}}^{-1}_{\infty,\infty}$表示$\dot{B}^{-1}_{\infty,\infty}$中的$C_0^\infty$的闭包。我们证明了如果$u\in L^\infty(0, T; \dot{B}^{-1}_{\infty,\infty})$, $u(x, T)\in \dot{\mathcal{B}}^{-1}_{\infty,\infty})$, $u_3\in L^\infty(0, T; L^{3, \infty})$或$u_3\in L^\infty(0, T; \dot{B}^{-1+3/p}_{p, q})$与$3
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信