Path Planning for Rolling Locomotion of Polyhedral Tensegrity Robots Based on Dijkstra Algorithm

IF 1.1 Q3 ENGINEERING, CIVIL
Yipeng Lu, Xian Xu, Yaozhi Luo
{"title":"Path Planning for Rolling Locomotion of Polyhedral Tensegrity Robots Based on Dijkstra Algorithm","authors":"Yipeng Lu, Xian Xu, Yaozhi Luo","doi":"10.20898/j.iass.2019.202.037","DOIUrl":null,"url":null,"abstract":"Tensegrity-based locomotive robots have attracted more and more interests from multidisciplinary engineering community. To realize long distance locomotion for tensegrity robots in a given land, path planning is usually needed. This paper proposes a path planning approach for rolling\n locomotion of polyhedral tensegrity robots. Given the start vertex, target vertex and the directed graph G which indicates the possible paths, the optimal path with lowest cost can be found by Dijkstra algorithm. Numerical and experimental examples are carried out with a six-bar tensegrity\n robot prototype. Both motion distance and terrain characteristics are considered within the cost. The proposed approach is generally verified by the examples. A comparison between the numerical result and the experimental result is also presented.","PeriodicalId":42855,"journal":{"name":"Journal of the International Association for Shell and Spatial Structures","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the International Association for Shell and Spatial Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20898/j.iass.2019.202.037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 12

Abstract

Tensegrity-based locomotive robots have attracted more and more interests from multidisciplinary engineering community. To realize long distance locomotion for tensegrity robots in a given land, path planning is usually needed. This paper proposes a path planning approach for rolling locomotion of polyhedral tensegrity robots. Given the start vertex, target vertex and the directed graph G which indicates the possible paths, the optimal path with lowest cost can be found by Dijkstra algorithm. Numerical and experimental examples are carried out with a six-bar tensegrity robot prototype. Both motion distance and terrain characteristics are considered within the cost. The proposed approach is generally verified by the examples. A comparison between the numerical result and the experimental result is also presented.
基于Dijkstra算法的多面体张拉整体机器人滚动运动路径规划
基于张拉整体的机车机器人越来越受到多学科工程界的关注。为了实现张拉整体机器人在给定土地上的长距离运动,通常需要进行路径规划。提出了一种多面体张拉整体机器人滚动运动的路径规划方法。给定起始点、目标点和表示可能路径的有向图G,通过Dijkstra算法可以找到代价最低的最优路径。以一个六杆张拉整体机器人样机为例进行了数值计算和实验。在成本范围内考虑了运动距离和地形特征。算例验证了该方法的有效性。并将数值计算结果与实验结果进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
17
期刊介绍: The Association publishes an international journal, the Journal of the IASS, four times yearly, in print (ISSN 1028-365X) and on-line (ISSN 1996-9015). The months of publication are March, June, September and December. Occasional extra electronic-only issues are included in the on-line version. From this page you can access one or more issues -- a sample issue if you are not logged into the members-only portion of the site, or the current issue and several back issues if you are logged in as a member. For any issue that you can view, you can download articles as .pdf files.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信