Characteristics of Large Vortical Structures in the Shallow Wake Flow With a Gap Near the Bed

Monsif Shinneeb, R. Balachandar
{"title":"Characteristics of Large Vortical Structures in the Shallow Wake Flow With a Gap Near the Bed","authors":"Monsif Shinneeb, R. Balachandar","doi":"10.1115/FEDSM2018-83501","DOIUrl":null,"url":null,"abstract":"PIV measurements were made to investigate the turbulent wake flow generated by a vertical sharp-edged flat plate suspended in a shallow channel flow with a gap near the bed. The purpose of this study is to investigate the behaviour of large vortical structures in the wake flow. The investigation focused on the horizontal velocity field in the mid-distance between the bottom bed and the top free surface. Two different gap heights between the channel bed and the bottom edge of the bluff body was studied. These two cases were compared to the no-gap flow case which is considered as a reference case. The Reynolds number based on the water depth was 45,000. The large vortical structures were exposed by analyzing the PIV velocity fields using the proper orthogonal decomposition (POD) method. Only few modes were used for the POD reconstruction of the velocity fields to recover ∼50% of the turbulent kinetic energy. A vortex identification algorithm was then employed to quantify the number, size, circulation, and direction of rotation of the exposed vortices. A statistical analysis of the distribution of number, size, and strength of the identified vortices was carried out to explore the characteristics of the vortical structures.\n The results revealed that the number of vortical structures increased as a result of the gap flow with a corresponding decrease in the vortex size and strength. This behaviour is attributed to the production of new vortices and the enhancement of the tearing process.","PeriodicalId":23480,"journal":{"name":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","volume":"104 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/FEDSM2018-83501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

PIV measurements were made to investigate the turbulent wake flow generated by a vertical sharp-edged flat plate suspended in a shallow channel flow with a gap near the bed. The purpose of this study is to investigate the behaviour of large vortical structures in the wake flow. The investigation focused on the horizontal velocity field in the mid-distance between the bottom bed and the top free surface. Two different gap heights between the channel bed and the bottom edge of the bluff body was studied. These two cases were compared to the no-gap flow case which is considered as a reference case. The Reynolds number based on the water depth was 45,000. The large vortical structures were exposed by analyzing the PIV velocity fields using the proper orthogonal decomposition (POD) method. Only few modes were used for the POD reconstruction of the velocity fields to recover ∼50% of the turbulent kinetic energy. A vortex identification algorithm was then employed to quantify the number, size, circulation, and direction of rotation of the exposed vortices. A statistical analysis of the distribution of number, size, and strength of the identified vortices was carried out to explore the characteristics of the vortical structures. The results revealed that the number of vortical structures increased as a result of the gap flow with a corresponding decrease in the vortex size and strength. This behaviour is attributed to the production of new vortices and the enhancement of the tearing process.
床附近有间隙的浅尾流中大型涡结构的特性
采用PIV测量方法,研究了在河床附近有间隙的浅槽流中悬浮的垂直锐边平板所产生的湍流尾流。本研究的目的是研究大型旋涡结构在尾流中的行为。研究的重点是底部与顶部自由面中间距离的水平速度场。研究了槽底与钝体底边之间两种不同的间隙高度。将这两种情况与作为参考情况的无间隙流动情况进行了比较。基于水深的雷诺数为45000。采用适当的正交分解(POD)方法对PIV速度场进行了分析,揭示了大型旋涡结构。速度场的POD重建只使用了少量的模态,恢复了~ 50%的湍流动能。然后采用涡识别算法对暴露涡的数量、大小、环流和旋转方向进行量化。对所识别的涡的数量、大小和强度分布进行了统计分析,探讨了涡结构的特征。结果表明,间隙流动增加了旋涡结构的数量,而旋涡的大小和强度相应减小。这种行为是由于新的涡流的产生和撕裂过程的增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信