Error Bounds for Inverse Mixed Quasi-Variational Inequality via Generalized Residual Gap Functions

Yinfeng Zhang, Guolin Yu
{"title":"Error Bounds for Inverse Mixed Quasi-Variational Inequality via Generalized Residual Gap Functions","authors":"Yinfeng Zhang, Guolin Yu","doi":"10.1142/S0217595921500172","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate error bounds of an inverse mixed quasi variational inequality problem in Hilbert spaces. Under the assumptions of strong monotonicity of function couple, we obtain some results related to error bounds using generalized residual gap functions. Each presented error bound is an effective estimation of the distance between a feasible solution and the exact solution. Because the inverse mixed quasi-variational inequality covers several kinds of variational inequalities, such as quasi-variational inequality, inverse mixed variational inequality and inverse quasi-variational inequality, the results obtained in this paper can be viewed as an extension of the corresponding results in the related literature.","PeriodicalId":8478,"journal":{"name":"Asia Pac. J. Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia Pac. J. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0217595921500172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we investigate error bounds of an inverse mixed quasi variational inequality problem in Hilbert spaces. Under the assumptions of strong monotonicity of function couple, we obtain some results related to error bounds using generalized residual gap functions. Each presented error bound is an effective estimation of the distance between a feasible solution and the exact solution. Because the inverse mixed quasi-variational inequality covers several kinds of variational inequalities, such as quasi-variational inequality, inverse mixed variational inequality and inverse quasi-variational inequality, the results obtained in this paper can be viewed as an extension of the corresponding results in the related literature.
广义残差间隙函数求混合拟变分逆不等式的误差界
研究了Hilbert空间中一类逆混合拟变分不等式问题的误差界。在函数对强单调性的假设下,利用广义残差间隙函数得到了误差界的一些结果。给出的每个误差界都是可行解与精确解之间距离的有效估计。由于混合拟变分逆不等式涵盖了拟变分不等式、混合变分逆不等式和拟变分逆不等式等几种变分不等式,所以本文的结果可以看作是相关文献相应结果的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信