Virtualizing Document Algorithms using Predictive Semantic Data

M.-u.-d. Tariq, Tjprc
{"title":"Virtualizing Document Algorithms using Predictive Semantic Data","authors":"M.-u.-d. Tariq, Tjprc","doi":"10.24247/ijmperdjun2020202","DOIUrl":null,"url":null,"abstract":"Semantic web technologies play a vital role in enhancing real-world applications. With the advent of time, information is readily available on the internet in various formats, including files, metadata documents (Microformats, RDF, RDFa), and documents. Often traditional search methods do not offer the adequate and required level of matching users’ information with the available online documents, which act as a barrier for efficient usage and reproduction of adapting keywords. This research focuses on an approach that automatically translates user-provided queries into the required formal structured queries. Users can use the approach to perform the translation efficiently. Moreover, the research focuses on the construction of a virtual document and queries for the semantic web data. Other than this, a more advanced search interface with a keyword-based approach is introduced for searching and retrieving most relevant objects.","PeriodicalId":14009,"journal":{"name":"International Journal of Mechanical and Production Engineering Research and Development","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical and Production Engineering Research and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24247/ijmperdjun2020202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Semantic web technologies play a vital role in enhancing real-world applications. With the advent of time, information is readily available on the internet in various formats, including files, metadata documents (Microformats, RDF, RDFa), and documents. Often traditional search methods do not offer the adequate and required level of matching users’ information with the available online documents, which act as a barrier for efficient usage and reproduction of adapting keywords. This research focuses on an approach that automatically translates user-provided queries into the required formal structured queries. Users can use the approach to perform the translation efficiently. Moreover, the research focuses on the construction of a virtual document and queries for the semantic web data. Other than this, a more advanced search interface with a keyword-based approach is introduced for searching and retrieving most relevant objects.
使用预测性语义数据虚拟化文档算法
语义web技术在增强现实世界的应用程序方面起着至关重要的作用。随着时间的推移,在internet上可以很容易地获得各种格式的信息,包括文件、元数据文档(微格式、RDF、RDFa)和文档。通常,传统的搜索方法不能提供足够和所需的用户信息与可用的在线文档的匹配水平,这是有效使用和复制适应关键字的障碍。本研究的重点是将用户提供的查询自动转换为所需的正式结构化查询的方法。用户可以使用该方法高效地完成翻译。此外,还研究了虚拟文档的构建和语义web数据的查询。除此之外,还引入了一个更高级的搜索界面,它使用基于关键字的方法来搜索和检索最相关的对象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信