E. Walsh, Marnie E. Shaw, D. Oyarce, M. Fraser, N. Cherbuin
{"title":"Assumption-Free Assessment of Corpus Callosum Shape: Benchmarking and Application","authors":"E. Walsh, Marnie E. Shaw, D. Oyarce, M. Fraser, N. Cherbuin","doi":"10.1155/2019/8921901","DOIUrl":null,"url":null,"abstract":"Shape analysis provides a unique insight into biological processes. This paper evaluates the properties, performance, and utility of elliptical Fourier (eFourier) analysis to operationalise global shape, focussing on the human corpus callosum. 8000 simulated corpus callosum contours were generated, systematically varying in terms of global shape (midbody arch, splenium size), local complexity (surface smoothness), and nonshape characteristics (e.g., rotation). 2088 real corpus callosum contours were manually traced from the PATH study. Performance of eFourier was benchmarked in terms of its capacity to capture and then reconstruct shape and systematically operationalise that shape via principal components analysis. We also compared the predictive performance of corpus callosum volume, position in Procrustes-aligned Landmark tangent space, and position in eFourier n-dimensional shape space in relation to the Symbol Digit Modalities Test. Jaccard index for original vs. reconstructed from eFourier shapes was excellent (M=0.98). The combination of eFourier and PCA performed particularly well in reconstructing known n-dimensional shape space but was disrupted by the inclusion of local shape manipulations. For the case study, volume, eFourier, and landmark measures were all correlated. Mixed effect model results indicated all methods detected similar features, but eFourier estimates were most predictive, and of the two shape operationalization techniques had the least error and better model fit. Elliptical Fourier analysis, particularly in combination with principal component analysis, is a powerful, assumption-free and intuitive method of quantifying global shape of the corpus callosum and shows great promise for shape analysis in neuroimaging more broadly.","PeriodicalId":55216,"journal":{"name":"Concepts in Magnetic Resonance Part A","volume":"73 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concepts in Magnetic Resonance Part A","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2019/8921901","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Shape analysis provides a unique insight into biological processes. This paper evaluates the properties, performance, and utility of elliptical Fourier (eFourier) analysis to operationalise global shape, focussing on the human corpus callosum. 8000 simulated corpus callosum contours were generated, systematically varying in terms of global shape (midbody arch, splenium size), local complexity (surface smoothness), and nonshape characteristics (e.g., rotation). 2088 real corpus callosum contours were manually traced from the PATH study. Performance of eFourier was benchmarked in terms of its capacity to capture and then reconstruct shape and systematically operationalise that shape via principal components analysis. We also compared the predictive performance of corpus callosum volume, position in Procrustes-aligned Landmark tangent space, and position in eFourier n-dimensional shape space in relation to the Symbol Digit Modalities Test. Jaccard index for original vs. reconstructed from eFourier shapes was excellent (M=0.98). The combination of eFourier and PCA performed particularly well in reconstructing known n-dimensional shape space but was disrupted by the inclusion of local shape manipulations. For the case study, volume, eFourier, and landmark measures were all correlated. Mixed effect model results indicated all methods detected similar features, but eFourier estimates were most predictive, and of the two shape operationalization techniques had the least error and better model fit. Elliptical Fourier analysis, particularly in combination with principal component analysis, is a powerful, assumption-free and intuitive method of quantifying global shape of the corpus callosum and shows great promise for shape analysis in neuroimaging more broadly.
期刊介绍:
Concepts in Magnetic Resonance Part A brings together clinicians, chemists, and physicists involved in the application of magnetic resonance techniques. The journal welcomes contributions predominantly from the fields of magnetic resonance imaging (MRI), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR), but also encourages submissions relating to less common magnetic resonance imaging and analytical methods.
Contributors come from academic, governmental, and clinical communities, to disseminate the latest important experimental results from medical, non-medical, and analytical magnetic resonance methods, as well as related computational and theoretical advances.
Subject areas include (but are by no means limited to):
-Fundamental advances in the understanding of magnetic resonance
-Experimental results from magnetic resonance imaging (including MRI and its specialized applications)
-Experimental results from magnetic resonance spectroscopy (including NMR, EPR, and their specialized applications)
-Computational and theoretical support and prediction for experimental results
-Focused reviews providing commentary and discussion on recent results and developments in topical areas of investigation
-Reviews of magnetic resonance approaches with a tutorial or educational approach