Joint Torque Estimation using Base Force-Torque Sensor to Facilitate Physical Human-Robot Interaction (pHRI)

S. Das, M. Saadatzi, Shamsudeen Abubakar, D. Popa
{"title":"Joint Torque Estimation using Base Force-Torque Sensor to Facilitate Physical Human-Robot Interaction (pHRI)","authors":"S. Das, M. Saadatzi, Shamsudeen Abubakar, D. Popa","doi":"10.1109/COASE.2019.8843092","DOIUrl":null,"url":null,"abstract":"To detect forces during physical Human-Robot Interaction (pHRI), a force-torque sensor (FTS) is generally attached at the wrist of a robot manipulator. Alternatively, collaborative robots can measure interaction forces via torque sensing at their joints. Yet another direction toward safe and interactive robots is to cover them in smart skins with embedded tactile sensors. In this paper, we explore another idea to facilitate pHRI using an FTS placed at the base of a robot arm. The resulting base force-torque sensor (BFTS) is able to sense external forces and torques applied anywhere along the robot body. We formulate a model-free, on-line learning controller to estimate the interaction forces on the robot from the BFTS data. The controller does not require a robot dynamic model to operate, and has Lyapunov stability guarantees. We conduct experiments to validate the mean-square estimation error of our scheme using a custom 6-DOF robotic arm under real-time control. Results show that the measured torques at individual joints closely follow the estimated values. In the future, this controller can be used for adaptive pHRI with non-collaborative robots or robot manipulators.","PeriodicalId":6695,"journal":{"name":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","volume":"75 5 1","pages":"1367-1372"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2019.8843092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

To detect forces during physical Human-Robot Interaction (pHRI), a force-torque sensor (FTS) is generally attached at the wrist of a robot manipulator. Alternatively, collaborative robots can measure interaction forces via torque sensing at their joints. Yet another direction toward safe and interactive robots is to cover them in smart skins with embedded tactile sensors. In this paper, we explore another idea to facilitate pHRI using an FTS placed at the base of a robot arm. The resulting base force-torque sensor (BFTS) is able to sense external forces and torques applied anywhere along the robot body. We formulate a model-free, on-line learning controller to estimate the interaction forces on the robot from the BFTS data. The controller does not require a robot dynamic model to operate, and has Lyapunov stability guarantees. We conduct experiments to validate the mean-square estimation error of our scheme using a custom 6-DOF robotic arm under real-time control. Results show that the measured torques at individual joints closely follow the estimated values. In the future, this controller can be used for adaptive pHRI with non-collaborative robots or robot manipulators.
基于基础力-扭矩传感器的关节扭矩估计促进人机物理交互(pHRI)
为了检测物理人机交互(pHRI)过程中的力,力-扭矩传感器(FTS)通常安装在机器人的手腕上。或者,协作机器人可以通过关节上的扭矩传感来测量相互作用力。另一个发展安全和互动机器人的方向是给它们覆盖上内置触觉传感器的智能皮肤。在本文中,我们探索了另一种使用放置在机械臂底部的FTS来促进pHRI的想法。由此产生的基础力-扭矩传感器(BFTS)能够感知施加在机器人身体任何地方的外力和扭矩。我们制定了一个无模型的在线学习控制器,从BFTS数据估计机器人上的相互作用力。该控制器不需要机器人动态模型即可运行,并具有李亚普诺夫稳定性保证。利用实时控制的自定义六自由度机械臂进行实验,验证了该方案的均方估计误差。结果表明,各关节处的实测扭矩与估计值基本一致。在未来,该控制器可用于非协作机器人或机器人机械手的自适应pHRI。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信