Farhad Fazlollahi, Sajjad Asadizadeh, Milad Ahmadi Khoshooei, M. R. S. Birjandi, M. Sarkari
{"title":"Investigating efficiency improvement in sulfur recovery unit using process simulation and numerical modeling","authors":"Farhad Fazlollahi, Sajjad Asadizadeh, Milad Ahmadi Khoshooei, M. R. S. Birjandi, M. Sarkari","doi":"10.2516/OGST/2020093","DOIUrl":null,"url":null,"abstract":"Hydrogen sulfide exists mostly as a detrimental byproduct in the gas processing units as well as refineries, and it must be eliminated from natural gas streams. In a Sulfur Recovery Unit (SRU), hydrogen sulfide is converted into the elemental sulfur during the modified Claus process. Efficiency of sulfur recovery units significantly depends on the reaction furnace temperature. In this work, the effect of oxygen and acid gas enrichment on the reaction furnace temperature and accordingly on sulfur recovery is studied, using both numerical modeling and process simulation. Then, simulation and numerical model are benchmarked against the experimental data of an SRU unit. The validated model provides spotlight on optimizing the upstream sulfur removal unit as well as the oxygen purification process. Two cases of acid gas streams with low and high H2S content, 30% and 50%, are studied to investigate the effect of operating parameters on the overall recovery. Finally, average errors of the models are presented. According to the absolute difference with experimental values, the developed numerical model shows great potential for accurately estimating overall efficiency of the recovery unit.","PeriodicalId":19424,"journal":{"name":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2516/OGST/2020093","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 2
Abstract
Hydrogen sulfide exists mostly as a detrimental byproduct in the gas processing units as well as refineries, and it must be eliminated from natural gas streams. In a Sulfur Recovery Unit (SRU), hydrogen sulfide is converted into the elemental sulfur during the modified Claus process. Efficiency of sulfur recovery units significantly depends on the reaction furnace temperature. In this work, the effect of oxygen and acid gas enrichment on the reaction furnace temperature and accordingly on sulfur recovery is studied, using both numerical modeling and process simulation. Then, simulation and numerical model are benchmarked against the experimental data of an SRU unit. The validated model provides spotlight on optimizing the upstream sulfur removal unit as well as the oxygen purification process. Two cases of acid gas streams with low and high H2S content, 30% and 50%, are studied to investigate the effect of operating parameters on the overall recovery. Finally, average errors of the models are presented. According to the absolute difference with experimental values, the developed numerical model shows great potential for accurately estimating overall efficiency of the recovery unit.
期刊介绍:
OGST - Revue d''IFP Energies nouvelles is a journal concerning all disciplines and fields relevant to exploration, production, refining, petrochemicals, and the use and economics of petroleum, natural gas, and other sources of energy, in particular alternative energies with in view of the energy transition.
OGST - Revue d''IFP Energies nouvelles has an Editorial Committee made up of 15 leading European personalities from universities and from industry, and is indexed in the major international bibliographical databases.
The journal publishes review articles, in English or in French, and topical issues, giving an overview of the contributions of complementary disciplines in tackling contemporary problems. Each article includes a detailed abstract in English. However, a French translation of the summaries can be provided to readers on request. Summaries of all papers published in the revue from 1974 can be consulted on this site. Over 1 000 papers that have been published since 1997 are freely available in full text form (as pdf files). Currently, over 10 000 downloads are recorded per month.
Researchers in the above fields are invited to submit an article. Rigorous selection of the articles is ensured by a review process that involves IFPEN and external experts as well as the members of the editorial committee. It is preferable to submit the articles in English, either as independent papers or in association with one of the upcoming topical issues.