Cloud architecture for industrial image processing: Platform for realtime inline quality assurance

Dirk Jacobsen, P. Ott
{"title":"Cloud architecture for industrial image processing: Platform for realtime inline quality assurance","authors":"Dirk Jacobsen, P. Ott","doi":"10.1109/INDIN.2017.8104749","DOIUrl":null,"url":null,"abstract":"Cloud computing offers the opportunity to minimize the evaluation time of complex algorithms — e.g. needed for computational imaging — by horizontal scaling of the available computing resources. By this way, new image analyzing algorithms can be employed in weak real-time conditions, like inline quality analysis in production with time stamps in the order of several tens of seconds. The cloud offers a platform to merge sensor data of all production processes to analyze quality data comprehensively, e.g. for methods like predictive maintenance. Typically, cloud environments are applied for the Internet of things (IoT) or Big Data analysis. But IoT-applications usually generate very small data packages (like sensor values with a size much less than 1 megabyte), while BigData applications deal with very high data volume (terra-or petabyte). Image processing requires an environment, which is optimized for medium size data streaming, composed of images with a size in the lower megabyte range. In this paper, a sensor-to-cloud architecture as a platform for image processing is described. This approach is upward compatible, because it is not necessary to change the sensor hardware, e.g. if algorithms with considerable higher computing complexity are desired (like for a smart camera), so algorithms can be exchanged in the cloud without interrupting the production process.","PeriodicalId":6595,"journal":{"name":"2017 IEEE 15th International Conference on Industrial Informatics (INDIN)","volume":"1 1","pages":"72-74"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 15th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN.2017.8104749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Cloud computing offers the opportunity to minimize the evaluation time of complex algorithms — e.g. needed for computational imaging — by horizontal scaling of the available computing resources. By this way, new image analyzing algorithms can be employed in weak real-time conditions, like inline quality analysis in production with time stamps in the order of several tens of seconds. The cloud offers a platform to merge sensor data of all production processes to analyze quality data comprehensively, e.g. for methods like predictive maintenance. Typically, cloud environments are applied for the Internet of things (IoT) or Big Data analysis. But IoT-applications usually generate very small data packages (like sensor values with a size much less than 1 megabyte), while BigData applications deal with very high data volume (terra-or petabyte). Image processing requires an environment, which is optimized for medium size data streaming, composed of images with a size in the lower megabyte range. In this paper, a sensor-to-cloud architecture as a platform for image processing is described. This approach is upward compatible, because it is not necessary to change the sensor hardware, e.g. if algorithms with considerable higher computing complexity are desired (like for a smart camera), so algorithms can be exchanged in the cloud without interrupting the production process.
工业图像处理的云架构:实时在线质量保证平台
云计算提供了最小化复杂算法的评估时间的机会——例如计算成像——通过水平缩放可用的计算资源。通过这种方式,新的图像分析算法可以在弱实时条件下使用,如生产中的在线质量分析,时间戳为几十秒。云提供了一个平台,可以合并所有生产过程的传感器数据,以全面分析质量数据,例如预测性维护等方法。通常,云环境应用于物联网(IoT)或大数据分析。但是物联网应用程序通常生成非常小的数据包(比如大小远小于1兆字节的传感器值),而大数据应用程序处理非常大的数据量(兆位或拍字节)。图像处理需要一个环境,该环境针对中等大小的数据流进行了优化,由大小在兆字节范围内的图像组成。本文描述了一种传感器到云架构作为图像处理平台。这种方法是向上兼容的,因为它不需要改变传感器硬件,例如,如果需要具有相当高的计算复杂性的算法(如智能相机),那么算法可以在云中交换而不会中断生产过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信