{"title":"Shock-wave Transceiver Integration for Mm-wave Active Sensing Applications : Invited Paper","authors":"N. Khanh, T. Iizuka, K. Asada","doi":"10.1109/ICICDT51558.2021.9626471","DOIUrl":null,"url":null,"abstract":"In this paper, several shock-wave generator schemes in mm-wave frequencies integrated in Bi-CMOS/CMOS as well as CMOS-quartz packaging processes are reviewed. Shock-wave generator techniques are generally divided in voltage-mode and electric current-mode. In voltage-mode, damping RLC circuits are employed to generate mm-wave shock-waves in both parallel and serial configurations. In addition, a positive feedback shock-wave generator to spark an LC circuit and then generate a shock pulse is presented. The circuit does not need any edge-sharpener circuit or over-sized transistors and hence requires a small chip area. Current-mode shock wave generator is presented by a combination of a CMOS excitation circuit and an on-quartz transmission line resonator. Testing prototypes are fabricated, measured, and verified. These proposed shock-wave generators are suitable for transmitter design in low-cost low-power broadband sensing applications.","PeriodicalId":6737,"journal":{"name":"2021 International Conference on IC Design and Technology (ICICDT)","volume":"1 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on IC Design and Technology (ICICDT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICDT51558.2021.9626471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, several shock-wave generator schemes in mm-wave frequencies integrated in Bi-CMOS/CMOS as well as CMOS-quartz packaging processes are reviewed. Shock-wave generator techniques are generally divided in voltage-mode and electric current-mode. In voltage-mode, damping RLC circuits are employed to generate mm-wave shock-waves in both parallel and serial configurations. In addition, a positive feedback shock-wave generator to spark an LC circuit and then generate a shock pulse is presented. The circuit does not need any edge-sharpener circuit or over-sized transistors and hence requires a small chip area. Current-mode shock wave generator is presented by a combination of a CMOS excitation circuit and an on-quartz transmission line resonator. Testing prototypes are fabricated, measured, and verified. These proposed shock-wave generators are suitable for transmitter design in low-cost low-power broadband sensing applications.