{"title":"Optimization of Crude Distillation Unit Case Study of the Port Harcourt Refining Company","authors":"Zina Jaja, J. G. Akpa, K. Dagde","doi":"10.4236/aces.2020.103009","DOIUrl":null,"url":null,"abstract":"An HYSYS model for the crude distillation unit of the Port Harcourt Refining Company has been developed. The HYSYS model developed includes 3 mixers, 3 heaters, 1 heat exchanger, 1 desalter (3-phase separator), 2-phase separator and the main fractionating column. The raw crude was characterized using Aspen HYSYS version 8.8 and the developed model was simulated with the industrial plant data from the Port Harcourt Refining Company. The HYSYS model gave component mole fractions of 0.2677, 0.1572, 0.2687, 0.0547, 0.2517 for Naphtha, Kerosene, Light Diesel Oil (LDO), Heavy Diesel Oil (HDO) and Atmospheric Residue and when compared to plant mole fractions of 0.2710, 0.1560, 0.2650, 0.0530, 0.2550 gave a maximum deviation of 3.2%. The HYSYS model was also able to predict the temperature and the tray of withdrawal for Naphtha, Kerosene, Light Diesel Oil (LDO), Heavy Diesel Oil (HDO) and Atmospheric Residue as follows: tray 1 (120°C), tray 12 (206°C), tray 25 (215°C), tray 35 (310°C) and tray 48 (320°C) which was also compared with plant data and gave a maximum deviation 23.2%. The HYSYS model was then optimized using Sequential Quadratic Programming (SQP) with the industrial plant data as starting values of operating conditions. The optimization increased the mass flow rate of Naphtha product from 7.512E+004 kg/hr to 7.656E+004 kg/hr, Kerosene product from 5.183E+004 kg/hr to 5.239E+004 kg/hr, Light Diesel Oil (LDO) product from 1.105E+005 kg/hr to 1.112E+005 kg/hr, Heavy Diesel Oil (HDO) from 2.969E+004 kg/hr to 2.977E+004 kg/hr while the last product being Atm Residue remained at 3.157E+005 kg/hr. The new optimum mole fraction values for the five products were as follows: 0.2713, 0.1540, 0.2635, 0.0528, and 0.2584 while corresponding optimum temperature values were as follows: 129°C, 221°C, 257°C, 317°C and 327°C.","PeriodicalId":7332,"journal":{"name":"Advances in Chemical Engineering and Science","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Chemical Engineering and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/aces.2020.103009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
An HYSYS model for the crude distillation unit of the Port Harcourt Refining Company has been developed. The HYSYS model developed includes 3 mixers, 3 heaters, 1 heat exchanger, 1 desalter (3-phase separator), 2-phase separator and the main fractionating column. The raw crude was characterized using Aspen HYSYS version 8.8 and the developed model was simulated with the industrial plant data from the Port Harcourt Refining Company. The HYSYS model gave component mole fractions of 0.2677, 0.1572, 0.2687, 0.0547, 0.2517 for Naphtha, Kerosene, Light Diesel Oil (LDO), Heavy Diesel Oil (HDO) and Atmospheric Residue and when compared to plant mole fractions of 0.2710, 0.1560, 0.2650, 0.0530, 0.2550 gave a maximum deviation of 3.2%. The HYSYS model was also able to predict the temperature and the tray of withdrawal for Naphtha, Kerosene, Light Diesel Oil (LDO), Heavy Diesel Oil (HDO) and Atmospheric Residue as follows: tray 1 (120°C), tray 12 (206°C), tray 25 (215°C), tray 35 (310°C) and tray 48 (320°C) which was also compared with plant data and gave a maximum deviation 23.2%. The HYSYS model was then optimized using Sequential Quadratic Programming (SQP) with the industrial plant data as starting values of operating conditions. The optimization increased the mass flow rate of Naphtha product from 7.512E+004 kg/hr to 7.656E+004 kg/hr, Kerosene product from 5.183E+004 kg/hr to 5.239E+004 kg/hr, Light Diesel Oil (LDO) product from 1.105E+005 kg/hr to 1.112E+005 kg/hr, Heavy Diesel Oil (HDO) from 2.969E+004 kg/hr to 2.977E+004 kg/hr while the last product being Atm Residue remained at 3.157E+005 kg/hr. The new optimum mole fraction values for the five products were as follows: 0.2713, 0.1540, 0.2635, 0.0528, and 0.2584 while corresponding optimum temperature values were as follows: 129°C, 221°C, 257°C, 317°C and 327°C.