E. D. Torres, J. Silva, Marcello Montillo Provenza, I. A. Lima, Jorge Luiz de Jesus Goulart
{"title":"UTILIZAÇÃO DOS MODELOS ARIMA PARA PREVISÃO DA TAXA DE CHURN: ESTUDO DE CASO PARA UMA EMPRESA DE E-COMMERCE","authors":"E. D. Torres, J. Silva, Marcello Montillo Provenza, I. A. Lima, Jorge Luiz de Jesus Goulart","doi":"10.12957/CADEST.2020.55671","DOIUrl":null,"url":null,"abstract":"A taxa de Churn, ou simplesmente Churn, calcula o número de usuários que se desconectam dos serviços de uma empresa em um período de tempo específico. Para alguns setores, esta é uma métrica básica para avaliar o sucesso do negócio, já que apresenta impacto direto no faturamento. Neste trabalho, projeta-se a curto prazo o Churn de uma empresa de e-commerce com base no histórico de seus dados. Para isso, utilizam-se as séries temporais para a previsão desses dados, o modelo Autorregressivo Integrado Médias Móveis (ARIMA). O trabalho passou por todas as etapas do ciclo iterativo de um processo de previsão dos dados, começando do estudo e análise da base de dados, passando pela escolha e validação dos parâmetros do modelo até chegar a projeção dos dados. O teste Dickey-Fuller mostrou que a série é estacionária, o melhor modelo encontrado foi o AR(1) e os resíduos seguem uma distribuição normal.","PeriodicalId":30267,"journal":{"name":"Cadernos do IME Serie Estatistica","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cadernos do IME Serie Estatistica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12957/CADEST.2020.55671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A taxa de Churn, ou simplesmente Churn, calcula o número de usuários que se desconectam dos serviços de uma empresa em um período de tempo específico. Para alguns setores, esta é uma métrica básica para avaliar o sucesso do negócio, já que apresenta impacto direto no faturamento. Neste trabalho, projeta-se a curto prazo o Churn de uma empresa de e-commerce com base no histórico de seus dados. Para isso, utilizam-se as séries temporais para a previsão desses dados, o modelo Autorregressivo Integrado Médias Móveis (ARIMA). O trabalho passou por todas as etapas do ciclo iterativo de um processo de previsão dos dados, começando do estudo e análise da base de dados, passando pela escolha e validação dos parâmetros do modelo até chegar a projeção dos dados. O teste Dickey-Fuller mostrou que a série é estacionária, o melhor modelo encontrado foi o AR(1) e os resíduos seguem uma distribuição normal.