Palm Oil Prediction Production Using Extreme Learning Machine

Yudi Triyanto, Ronal Watrianthos, Pristiyono, Yusmaidar Sepriani, K. Rizal
{"title":"Palm Oil Prediction Production Using Extreme Learning Machine","authors":"Yudi Triyanto, Ronal Watrianthos, Pristiyono, Yusmaidar Sepriani, K. Rizal","doi":"10.31227/osf.io/hya43","DOIUrl":null,"url":null,"abstract":"The total production of Indonesian palm oil (CPO) in 2018 reached 43.9 million tons, with a land area of 12.3 million hectares.However, every month there are still many companies that have problems in predicting palm oil production. Problems in predicting thisproduction can be solved by calculation methods in the field of artificial neural networks, namely the Extreme Learning Machine (ELM)method. This method can solve linear and non-linear data problems and provide better average computation compared to other methods inpredicting oil palm production. The data used is palm oil production data at PT Indo Palm Oil Labuhan Batu with a total of 297 in the period2017-2018. While the parameters used are planting age, land area, number of trees, and yields. The results of the best-hidden neuron testare 13 with 2 technical data features and the training data pattern is pattern 1. The average MAPE value is 20.1% with the fastestcomputing time is the use of the number of hidden neurons 2. So based on the test results, the method ELM has a predictive model withquite good performance because the MAPE value is in the range of 20% -50%.","PeriodicalId":14347,"journal":{"name":"International Journal of Scientific & Technology Research","volume":"37 1","pages":"1070-1072"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific & Technology Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31227/osf.io/hya43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The total production of Indonesian palm oil (CPO) in 2018 reached 43.9 million tons, with a land area of 12.3 million hectares.However, every month there are still many companies that have problems in predicting palm oil production. Problems in predicting thisproduction can be solved by calculation methods in the field of artificial neural networks, namely the Extreme Learning Machine (ELM)method. This method can solve linear and non-linear data problems and provide better average computation compared to other methods inpredicting oil palm production. The data used is palm oil production data at PT Indo Palm Oil Labuhan Batu with a total of 297 in the period2017-2018. While the parameters used are planting age, land area, number of trees, and yields. The results of the best-hidden neuron testare 13 with 2 technical data features and the training data pattern is pattern 1. The average MAPE value is 20.1% with the fastestcomputing time is the use of the number of hidden neurons 2. So based on the test results, the method ELM has a predictive model withquite good performance because the MAPE value is in the range of 20% -50%.
利用极限学习机预测棕榈油产量
2018年印尼棕榈油(CPO)总产量达到4390万吨,土地面积为1230万公顷。然而,每个月仍有许多公司在预测棕榈油产量方面存在问题。预测产量的问题可以通过人工神经网络领域的计算方法,即极限学习机(ELM)方法来解决。该方法可以解决线性和非线性数据问题,并且在预测油棕产量方面提供了比其他方法更好的平均计算。使用的数据是PT Indo棕榈油Labuhan Batu的棕榈油生产数据,2017-2018年期间共297个。而使用的参数是种植年龄、土地面积、树木数量和产量。最佳隐藏神经元测试结果为13,具有2个技术数据特征,训练数据模式为模式1。平均MAPE值为20.1%,最快的计算时间是使用隐藏神经元的数量2。因此,根据测试结果,该方法的预测模型具有相当好的性能,因为MAPE值在20% -50%的范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信