Irwin's Stress Intensity Factor—A Historical Perspective

J. Newman
{"title":"Irwin's Stress Intensity Factor—A Historical Perspective","authors":"J. Newman","doi":"10.1520/STP14792S","DOIUrl":null,"url":null,"abstract":"This paper is written to honor Dr. George R. Irwin and reviews several key developments in fracture mechanics based on his \"stress-intensity factor\" concept. The early development of two fundamental crack solutions, (1) an edge crack in a semi-infinite body and (2) the surface crack, are highlighted. Applications of Irwin's early concepts by other researchers to characterize fatigue-crack growth and brittle fracture of metallic materials are presented. The stress-intensity factor is the cornerstone of the damage-tolerance and durability design concepts used by the aerospace community around the world. The stress-intensity factor concept, crack-closure mechanics, and the observation that \"fatigue is crack propagation\" in many engineering materials has led to a merger of fatigue and fracture mechanics analysis methodologies. Irwin's recognition of the importance of the normal stress parallel to the crack (now referred to as the T-stress) in fracture led many to propose a two-parameter characterization for fracture. The importance of constraint on crack-tip yielding has been further advanced by the use of high-powered computers to calculate a normal-stress constraint parameter following his ideas. The father of fracture mechanics has left a legacy that will endure and provide safer and more reliable structures in the future.","PeriodicalId":8583,"journal":{"name":"ASTM special technical publications","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASTM special technical publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/STP14792S","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper is written to honor Dr. George R. Irwin and reviews several key developments in fracture mechanics based on his "stress-intensity factor" concept. The early development of two fundamental crack solutions, (1) an edge crack in a semi-infinite body and (2) the surface crack, are highlighted. Applications of Irwin's early concepts by other researchers to characterize fatigue-crack growth and brittle fracture of metallic materials are presented. The stress-intensity factor is the cornerstone of the damage-tolerance and durability design concepts used by the aerospace community around the world. The stress-intensity factor concept, crack-closure mechanics, and the observation that "fatigue is crack propagation" in many engineering materials has led to a merger of fatigue and fracture mechanics analysis methodologies. Irwin's recognition of the importance of the normal stress parallel to the crack (now referred to as the T-stress) in fracture led many to propose a two-parameter characterization for fracture. The importance of constraint on crack-tip yielding has been further advanced by the use of high-powered computers to calculate a normal-stress constraint parameter following his ideas. The father of fracture mechanics has left a legacy that will endure and provide safer and more reliable structures in the future.
欧文的压力强度因素——一个历史的视角
本文是为了纪念George R. Irwin博士而写的,并基于他的“应力强度因子”概念回顾了断裂力学的几个关键发展。重点介绍了两种基本裂纹解的早期发展,即(1)半无限物体的边缘裂纹和(2)表面裂纹。其他研究人员将欧文的早期概念应用于表征金属材料的疲劳裂纹扩展和脆性断裂。应力强度因子是世界各地航空航天界使用的损伤容限和耐久性设计概念的基石。在许多工程材料中,应力强度因子概念、裂纹闭合力学以及“疲劳即裂纹扩展”的观察导致了疲劳力学和断裂力学分析方法的合并。欧文认识到与裂缝平行的法向应力(现在称为t应力)在断裂中的重要性,这使许多人提出了断裂的双参数表征。根据他的思想,利用高性能计算机计算法向应力约束参数,进一步提高了约束对裂纹尖端屈服的重要性。这位断裂力学之父留下的宝贵遗产将在未来提供更安全、更可靠的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信