{"title":"An embedded wavelet image coder with parallel encoding and sequential decoding of bit-planes","authors":"Yufei Yuan, Mrinal K. Mandal","doi":"10.1016/j.rti.2004.08.006","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Wavelet-based coders are widely used in image compression. Many popular embedded wavelet coders are based on a </span>data structure<span> known as zerotree. However, there exists another category of embedded wavelet coders that are fast and efficient without employing zerotree. These coders are based on three key concepts: (1) wavelet coefficient reordering, (2) bit-plane partitioning, and (3) encoding of bit-planes with certain efficient variants of run-length coding. In this paper, we propose a novel method to construct a bit-plane encoder that can be used in this category of non-zerotree coders. Instead of encoding the bit-planes progressively, the bit-plane encoding process can be finished in one pass when multiple bit-plane encoders are activated concurrently. With this proposed method, traditional partitioned-block based </span></span>parallel processing<span> strategy is enhanced with another dimension (depth of bit-planes) of processing flexibility. This bit-plane encoder inherently targets parallel processing architecture. The final output bitstream can be compatible with that of the original sequential coder if compatibility is preferred over speed and memory efficiency.</span></p></div>","PeriodicalId":101062,"journal":{"name":"Real-Time Imaging","volume":"10 5","pages":"Pages 285-295"},"PeriodicalIF":0.0000,"publicationDate":"2004-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.rti.2004.08.006","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real-Time Imaging","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1077201404000671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Wavelet-based coders are widely used in image compression. Many popular embedded wavelet coders are based on a data structure known as zerotree. However, there exists another category of embedded wavelet coders that are fast and efficient without employing zerotree. These coders are based on three key concepts: (1) wavelet coefficient reordering, (2) bit-plane partitioning, and (3) encoding of bit-planes with certain efficient variants of run-length coding. In this paper, we propose a novel method to construct a bit-plane encoder that can be used in this category of non-zerotree coders. Instead of encoding the bit-planes progressively, the bit-plane encoding process can be finished in one pass when multiple bit-plane encoders are activated concurrently. With this proposed method, traditional partitioned-block based parallel processing strategy is enhanced with another dimension (depth of bit-planes) of processing flexibility. This bit-plane encoder inherently targets parallel processing architecture. The final output bitstream can be compatible with that of the original sequential coder if compatibility is preferred over speed and memory efficiency.