Similarity Join over Array Data

Weijie Zhao, Florin Rusu, Bin Dong, Kesheng Wu
{"title":"Similarity Join over Array Data","authors":"Weijie Zhao, Florin Rusu, Bin Dong, Kesheng Wu","doi":"10.1145/2882903.2915247","DOIUrl":null,"url":null,"abstract":"Scientific applications are generating an ever-increasing volume of multi-dimensional data that are largely processed inside distributed array databases and frameworks. Similarity join is a fundamental operation across scientific workloads that requires complex processing over an unbounded number of pairs of multi-dimensional points. In this paper, we introduce a novel distributed similarity join operator for multi-dimensional arrays. Unlike immediate extensions to array join and relational similarity join, the proposed operator minimizes the overall data transfer and network congestion while providing load-balancing, without completely repartitioning and replicating the input arrays. We define formally array similarity join and present the design, optimization strategies, and evaluation of the first array similarity join operator.","PeriodicalId":20483,"journal":{"name":"Proceedings of the 2016 International Conference on Management of Data","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2016 International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2882903.2915247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

Scientific applications are generating an ever-increasing volume of multi-dimensional data that are largely processed inside distributed array databases and frameworks. Similarity join is a fundamental operation across scientific workloads that requires complex processing over an unbounded number of pairs of multi-dimensional points. In this paper, we introduce a novel distributed similarity join operator for multi-dimensional arrays. Unlike immediate extensions to array join and relational similarity join, the proposed operator minimizes the overall data transfer and network congestion while providing load-balancing, without completely repartitioning and replicating the input arrays. We define formally array similarity join and present the design, optimization strategies, and evaluation of the first array similarity join operator.
数组数据上的相似性连接
科学应用程序正在生成越来越多的多维数据,这些数据主要在分布式数组数据库和框架中进行处理。相似性连接是跨科学工作负载的基本操作,它需要对无限数量的多维点对进行复杂处理。本文引入了一种新的多维数组分布式相似连接算子。与对数组连接和关系相似连接的直接扩展不同,所建议的操作符在提供负载平衡的同时最小化了总体数据传输和网络拥塞,而无需完全重新分区和复制输入数组。我们正式定义了数组相似连接,并给出了第一个数组相似连接操作符的设计、优化策略和计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信