EVALUATION OF THE MECHANICAL PROPERTIES OF DIFFUSION LAYER IN THE PROCESS OF MICROARC STEEL VANADATION

Q3 Materials Science
M. Stepanov, Yu. M. Dombrovskii, L. V. Davidyan
{"title":"EVALUATION OF THE MECHANICAL PROPERTIES OF DIFFUSION LAYER IN THE PROCESS OF MICROARC STEEL VANADATION","authors":"M. Stepanov, Yu. M. Dombrovskii, L. V. Davidyan","doi":"10.17073/0368-0797-2018-8-625-630","DOIUrl":null,"url":null,"abstract":"Traditional processes of thermochemical treatment of steel have a longer duration, so there are proposed the new methods of intensification of diffusion saturation with high-energy impacts on the material surface. In the process of micro-arc alloying the steel product is immersed in a container filled with powder of coal, and is heated by passing electric current. In a powder environment, microdischarges are formed, which are concentrated around the product and create an area of gas discharge with the formation of a carbonaceous gas environment, which enables carburizing of steel. The application of coating containing diffusant allows forming coating of a carbide type due to simultaneous carbon diffusion into alloying elements. The influence of micro-arc surface alloying of steel with vanadium on mechanical properties of diffusion coatings is studied, and the primary mechanism of steel hardening at microarc alloying is revealed. Cylindrical samples of 20 steel were used; the source diffusant was a powder of ferrovanadium. Current density on the sample surface was 0.3 A/cm2, total duration of the process was 3 min. The mechanical properties of coatings were evaluated by means of indentation using pyramidal indenter, at loads of 2.5 mN, 20 mN and 100mN. The diffusion layer with thickness of 170 – 180 μm consists of a base with hardness of 8 – 9 GPa, containing mild etching inclusions of up to 5 μm with microhardness of 21 – 25 GPa. The base of the layer represents an α-solid solution of vanadium in iron, and inclusions are carbides of VC0.863 type. By atomic force microscopy it was established, that the surface relief is defined by single, relatively large carbide particles with a size of up to 3 μm, and by plural nano-sized carbide particles, which act as  the strengthening phase, providing high microhardness of the coating. By method of indentation of the hardened layer cross section using different loads hardening effect of the carbide particles is proven. Estimation of possible mechanisms of hardening have shown that the greatest contribution to diffusion layer hardening is made by dispersion component significantly increasing the yield stress of α-solid solution of iron in comparison with the initial state, which is 38 times greater than the contribution of solid-solution hardening.","PeriodicalId":35527,"journal":{"name":"Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17073/0368-0797-2018-8-625-630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 3

Abstract

Traditional processes of thermochemical treatment of steel have a longer duration, so there are proposed the new methods of intensification of diffusion saturation with high-energy impacts on the material surface. In the process of micro-arc alloying the steel product is immersed in a container filled with powder of coal, and is heated by passing electric current. In a powder environment, microdischarges are formed, which are concentrated around the product and create an area of gas discharge with the formation of a carbonaceous gas environment, which enables carburizing of steel. The application of coating containing diffusant allows forming coating of a carbide type due to simultaneous carbon diffusion into alloying elements. The influence of micro-arc surface alloying of steel with vanadium on mechanical properties of diffusion coatings is studied, and the primary mechanism of steel hardening at microarc alloying is revealed. Cylindrical samples of 20 steel were used; the source diffusant was a powder of ferrovanadium. Current density on the sample surface was 0.3 A/cm2, total duration of the process was 3 min. The mechanical properties of coatings were evaluated by means of indentation using pyramidal indenter, at loads of 2.5 mN, 20 mN and 100mN. The diffusion layer with thickness of 170 – 180 μm consists of a base with hardness of 8 – 9 GPa, containing mild etching inclusions of up to 5 μm with microhardness of 21 – 25 GPa. The base of the layer represents an α-solid solution of vanadium in iron, and inclusions are carbides of VC0.863 type. By atomic force microscopy it was established, that the surface relief is defined by single, relatively large carbide particles with a size of up to 3 μm, and by plural nano-sized carbide particles, which act as  the strengthening phase, providing high microhardness of the coating. By method of indentation of the hardened layer cross section using different loads hardening effect of the carbide particles is proven. Estimation of possible mechanisms of hardening have shown that the greatest contribution to diffusion layer hardening is made by dispersion component significantly increasing the yield stress of α-solid solution of iron in comparison with the initial state, which is 38 times greater than the contribution of solid-solution hardening.
微弧钢钒化过程中扩散层力学性能的评价
传统的钢材热化学处理工艺持续时间较长,因此提出了利用高能冲击材料表面来增强扩散饱和的新方法。在微弧合金化过程中,将钢制品浸入装有煤粉的容器中,通过电流加热。在粉末环境中,形成微放电,微放电集中在产品周围,形成气体放电区,形成含碳气体环境,使钢渗碳成为可能。含有扩散剂的涂层的应用允许由于碳同时扩散到合金元素而形成碳化物类型的涂层。研究了钒钢微弧表面合金化对扩散涂层力学性能的影响,揭示了钢在微弧合金化过程中硬化的主要机理。采用20钢的圆柱形试样;源扩散剂为钒铁粉末。样品表面的电流密度为0.3 A/cm2,过程总持续时间为3 min。在2.5 mN, 20 mN和100mN载荷下,使用锥体压头通过压痕评估涂层的机械性能。厚度为170 ~ 180 μm的扩散层由硬度为8 ~ 9 GPa的基体组成,其中含有5 μm的轻度蚀刻夹杂物,显微硬度为21 ~ 25 GPa。层底为钒在铁中的α-固溶体,包裹体为VC0.863型碳化物。原子力显微镜观察发现,涂层表面形貌由单个较大的3 μm碳化物颗粒和多个纳米碳化物颗粒组成,这些纳米碳化物颗粒作为强化相,提供了较高的显微硬度。通过压痕法对硬化层的横截面进行分析,验证了不同载荷下碳化物颗粒的硬化效果。对可能的硬化机制的估计表明,扩散组分对扩散层硬化的贡献最大,与初始状态相比,α-固溶体铁的屈服应力显著增加,是固溶硬化的38倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya
Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya Materials Science-Materials Science (miscellaneous)
CiteScore
0.90
自引率
0.00%
发文量
81
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信