A relation between the crossing number and the height of a knotoid

Ph. G. Korablev, V. Tarkaev
{"title":"A relation between the crossing number and the height of a knotoid","authors":"Ph. G. Korablev, V. Tarkaev","doi":"10.1142/S0218216521500401","DOIUrl":null,"url":null,"abstract":"Knotoids are open ended knot diagrams regarded up to Reidemeister moves and isotopies. The notion is introduced by V.~Turaev in 2012. Two most important numeric characteristics of a knotoid are the crossing number and the height. The latter is the least number of intersections between a diagram and an arc connecting its endpoints, where the minimum is taken over all representative diagrams and all such an arcs disjoint from crossings. In the paper we answer the question: are there any relations between the crossing number and the height of a knotoid. We prove that the crossing number of a knotoid is greater than or equal to twice the height of the knotoid. Combining the inequality with known lower bounds of the height we obtain a lower bounds of the crossing number of a knotoid via the extended bracket polynomial, the affine index polynomial and the arrow polynomial of the knotoid. As an application of our result we prove an upper bound for the length of a bridge in a minimal diagram of a classical knot: the number of crossings in a minimal diagram of a knot is greater than or equal to three times the length of a longest bridge in the diagram.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"159 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0218216521500401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Knotoids are open ended knot diagrams regarded up to Reidemeister moves and isotopies. The notion is introduced by V.~Turaev in 2012. Two most important numeric characteristics of a knotoid are the crossing number and the height. The latter is the least number of intersections between a diagram and an arc connecting its endpoints, where the minimum is taken over all representative diagrams and all such an arcs disjoint from crossings. In the paper we answer the question: are there any relations between the crossing number and the height of a knotoid. We prove that the crossing number of a knotoid is greater than or equal to twice the height of the knotoid. Combining the inequality with known lower bounds of the height we obtain a lower bounds of the crossing number of a knotoid via the extended bracket polynomial, the affine index polynomial and the arrow polynomial of the knotoid. As an application of our result we prove an upper bound for the length of a bridge in a minimal diagram of a classical knot: the number of crossings in a minimal diagram of a knot is greater than or equal to three times the length of a longest bridge in the diagram.
交点数与结点高度之间的关系
结状体是开放的结状图,一直被认为是雷德米斯特运动和同位素。这个概念是由V.~Turaev在2012年提出的。结点的两个最重要的数值特征是交叉数和高度。后者是图和连接其端点的弧线之间相交的最少数量,其中最小值是所有具有代表性的图和所有不相交的弧线。本文回答了一个问题:结点的交叉数与结点的高度是否有关系?证明了结点的交点数大于等于结点高度的两倍。将不等式与已知的高度下界结合,通过扩展的括号多项式、仿射指数多项式和矢形多项式得到了结点的交叉数下界。作为我们的结果的一个应用,我们证明了经典结的最小图中桥梁长度的上界:结的最小图中交叉的数目大于或等于图中最长桥梁长度的三倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信