Optimal Code Pairs Satisfying Relative Chain Condition

Zhuojun Zhuang, Keke Zhang, Bin Dai, Jia Huang, Zhen Jing
{"title":"Optimal Code Pairs Satisfying Relative Chain Condition","authors":"Zhuojun Zhuang, Keke Zhang, Bin Dai, Jia Huang, Zhen Jing","doi":"10.1109/ICCC47050.2019.9064373","DOIUrl":null,"url":null,"abstract":"The relative generalized Hamming weight (RGHW) of a linear code and a linear subcode is a generalization of generalized Hamming weight (GHW). It characterizes the code performance of the wiretap channel of type II, secure network coding, linear ramp secret sharing scheme and trellis complexity. In this paper, we present a new proof of the Griesmer bound on RGHW by the idea of residue code. Motivated by the proof, we introduce the concept of relative chain condition and show that code pairs meeting the Singleton, weak Plotkin and Griesmer bounds satisfy this condition. This research may be helpful for studying the connection between RGHW and trellis complexity, the weight hierarchy of code pairs, etc.","PeriodicalId":6739,"journal":{"name":"2019 IEEE 5th International Conference on Computer and Communications (ICCC)","volume":"103 1","pages":"1527-1531"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 5th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC47050.2019.9064373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The relative generalized Hamming weight (RGHW) of a linear code and a linear subcode is a generalization of generalized Hamming weight (GHW). It characterizes the code performance of the wiretap channel of type II, secure network coding, linear ramp secret sharing scheme and trellis complexity. In this paper, we present a new proof of the Griesmer bound on RGHW by the idea of residue code. Motivated by the proof, we introduce the concept of relative chain condition and show that code pairs meeting the Singleton, weak Plotkin and Griesmer bounds satisfy this condition. This research may be helpful for studying the connection between RGHW and trellis complexity, the weight hierarchy of code pairs, etc.
满足相对链条件的最优码对
线性码和线性子码的相对广义汉明权(RGHW)是广义汉明权(GHW)的一种推广。分析了II型窃听信道的编码性能、安全网络编码、线性斜坡秘密共享方案和栅格复杂度。本文利用剩余码的思想,给出了RGHW上Griesmer界的一个新的证明。在证明的激励下,我们引入了相对链条件的概念,并证明了满足Singleton界、弱Plotkin界和Griesmer界的码对满足这个条件。该研究有助于研究RGHW与网格复杂度、代码对权重层次等之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信