Sur un nouveau traitement multigroupe de la diffusion des neutrons dans les milieux reproducteurs Application a la correction des perturbations subies par les flux thermiques et rapides au voisinage d'un reflecteur, d'une source de neutrons ou d'un reseau different

J. Martelly
{"title":"Sur un nouveau traitement multigroupe de la diffusion des neutrons dans les milieux reproducteurs Application a la correction des perturbations subies par les flux thermiques et rapides au voisinage d'un reflecteur, d'une source de neutrons ou d'un reseau different","authors":"J. Martelly","doi":"10.1016/0891-3919(58)90002-0","DOIUrl":null,"url":null,"abstract":"<div><p><strong>Part 1</strong>—If the equilibrium between thermal and fast neutrons propagated in a reproducing medium is perturbed by a neighbouring medium (a reflector, a fast neutron source, a system with a different lattice, etc.) the spatial distribution of each of the groups is also perturbed: it no longer obeys the elementary diffusion equation: <span><math><mtext>ϵ</mtext><msup><mi></mi><mn>ϕ</mn></msup><mtext> + </mtext><mtext>K − 1</mtext><mtext>M</mtext><msup><mi></mi><mn>2</mn></msup><mtext>ϵ = 0</mtext></math></span></p><p>On the other hand, the linear combination <span><span><span><math><mtext>T = </mtext><mtext>σ</mtext><mtext>i</mtext><mtext>1</mtext><mtext>3</mtext><mtext>λ</mtext><msub><mi></mi><mn>i</mn></msub><mtext>ε</mtext><msub><mi></mi><mn>i</mn></msub></math></span></span></span> covering all the neutron groups, no matter how many, is very little affected by these perturbations: this combination satisfies an equation (No. 22) which differs from the above diffusion equation by the addition of corrective terms, modifying the Laplacian, which are proportional to the perturbations of the spectral distribution. Discussion shows that the effect of these corrective terms is negligible in practice for natural uranium lattices (Fig. 3); it is also small for enriched piles.</p><p>A physical interpretation of these results is based on the following statement: the gradient of <em>T</em> is equal to the total neutron current.</p><p>The introduction of this quantity naturally simplifies certain problems in permitting the use of one group theory (if necessary with slight corrections) to give a better precision than the classical two group theory.</p><p>In particular the systematic errors in the measurements of the Laplacian due to the conditions at the extremities of the medium under study, are avoided.</p><p><strong>Part 2</strong>—The practical application of the properties of the function <em>T</em> assumes an experimental knowledge of the function. It is defined for a large number of groups, whereas the actual measurements are often limited to the activities of detectors in the thermal and resonance energy ranges: <em>T</em> can in fact be deduced from them if one knows the diffusion law which applies during slowing down. The calculation is carried through for two particular cases of perturbation,—a neighbouring source of fissions, and a neighbouring reflector.</p><p>The results may be expressed in a two group formula (equation 46 for example) by means of the weighing coefficients, functions of the space co-ordinates—which must be applied to the quantities <em>q</em><sub><em>n</em></sub> and <em>q</em><sub><em>r</em></sub> which are proportional to the two measured activities. It is more convenient to employ the ratio <em>h</em> of these activities (or, what amounts to the same thing, the “cadmium ratio”) since this does not presuppose an absolute calibration of the detectors.</p><p><em>T</em> is then expressed (41) by the measure of the thermal flux (<em>q</em><sub><em>n</em></sub>) modified by a correction term proportional to the perturbation.</p><p>The elementary formulae of the one group theory may be conveniently applied to the result of this correction in the order to calculate the this correction in the order to calculate the Laplacian.</p></div>","PeriodicalId":100812,"journal":{"name":"Journal of Nuclear Energy (1954)","volume":"8 1","pages":"Pages 1-17"},"PeriodicalIF":0.0000,"publicationDate":"1958-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0891-3919(58)90002-0","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nuclear Energy (1954)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0891391958900020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Part 1—If the equilibrium between thermal and fast neutrons propagated in a reproducing medium is perturbed by a neighbouring medium (a reflector, a fast neutron source, a system with a different lattice, etc.) the spatial distribution of each of the groups is also perturbed: it no longer obeys the elementary diffusion equation: ϵϕ + K − 1M2ϵ = 0

On the other hand, the linear combination T = σi13λiεi covering all the neutron groups, no matter how many, is very little affected by these perturbations: this combination satisfies an equation (No. 22) which differs from the above diffusion equation by the addition of corrective terms, modifying the Laplacian, which are proportional to the perturbations of the spectral distribution. Discussion shows that the effect of these corrective terms is negligible in practice for natural uranium lattices (Fig. 3); it is also small for enriched piles.

A physical interpretation of these results is based on the following statement: the gradient of T is equal to the total neutron current.

The introduction of this quantity naturally simplifies certain problems in permitting the use of one group theory (if necessary with slight corrections) to give a better precision than the classical two group theory.

In particular the systematic errors in the measurements of the Laplacian due to the conditions at the extremities of the medium under study, are avoided.

Part 2—The practical application of the properties of the function T assumes an experimental knowledge of the function. It is defined for a large number of groups, whereas the actual measurements are often limited to the activities of detectors in the thermal and resonance energy ranges: T can in fact be deduced from them if one knows the diffusion law which applies during slowing down. The calculation is carried through for two particular cases of perturbation,—a neighbouring source of fissions, and a neighbouring reflector.

The results may be expressed in a two group formula (equation 46 for example) by means of the weighing coefficients, functions of the space co-ordinates—which must be applied to the quantities qn and qr which are proportional to the two measured activities. It is more convenient to employ the ratio h of these activities (or, what amounts to the same thing, the “cadmium ratio”) since this does not presuppose an absolute calibration of the detectors.

T is then expressed (41) by the measure of the thermal flux (qn) modified by a correction term proportional to the perturbation.

The elementary formulae of the one group theory may be conveniently applied to the result of this correction in the order to calculate the this correction in the order to calculate the Laplacian.

对再现介质中中子扩散的一种新的多组处理方法的应用,用于校正反射器、中子源或不同网络附近热流和快流所遭受的扰动
如果在再生介质中传播的热中子和快中子之间的平衡受到邻近介质(反射器、快中子源、具有不同晶格的系统等)的扰动,则每一群的空间分布也受到扰动:它不再服从基本扩散方程:ϵϕ + K−1m2ε = 0另一方面,覆盖所有中子群的线性组合T = σi13λiεi,不管有多少,受这些扰动的影响很小:这个组合满足一个方程(第22号),它与上述扩散方程的不同之处在于添加了校正项,修改了拉普拉斯算子,它们与光谱分布的扰动成正比。讨论表明,对于天然铀晶格,这些校正项的影响在实践中可以忽略不计(图3);对于富集桩来说,它也很小。对这些结果的物理解释是基于以下陈述:T的梯度等于中子总电流。这个量的引入自然简化了某些问题,允许使用一个群论(如果必要的话,稍加修正)来提供比经典的两个群论更好的精度。特别地,由于所研究的介质的极端条件所引起的拉普拉斯测量中的系统误差是可以避免的。第2部分-函数T性质的实际应用假设对函数有实验知识。它是为大量群体定义的,而实际测量通常限于探测器在热和共振能量范围内的活动:事实上,如果知道减速过程中适用的扩散定律,就可以从它们推断出T。对两种特殊的微扰情况进行了计算,一种是相邻的裂变源,另一种是相邻的反射器。结果可以用一个两组公式(例如,公式46)来表示,通过称重系数,空间坐标的函数,它必须应用于与两个测量活动成比例的量qn和qr。使用这些活动的比率h(或者,相当于同样的东西,“镉比率”)更为方便,因为这并不预设检测器的绝对校准。然后用热通量(qn)的测量来表示T(41),该测量由与扰动成比例的修正项修正。单群理论的初等公式可以方便地应用于这一修正的结果,以便计算这一修正在计算拉普拉斯量的顺序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信