Self‐avoiding walk on the hypercube

IF 0.9 3区 数学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
G. Slade
{"title":"Self‐avoiding walk on the hypercube","authors":"G. Slade","doi":"10.1002/rsa.21117","DOIUrl":null,"url":null,"abstract":"We study the number cn(N)$$ {c}_n^{(N)} $$ of n$$ n $$ ‐step self‐avoiding walks on the N$$ N $$ ‐dimensional hypercube, and identify an N$$ N $$ ‐dependent connective constant μN$$ {\\mu}_N $$ and amplitude AN$$ {A}_N $$ such that cn(N)$$ {c}_n^{(N)} $$ is O(μNn)$$ O\\left({\\mu}_N^n\\right) $$ for all n$$ n $$ and N$$ N $$ , and is asymptotically ANμNn$$ {A}_N{\\mu}_N^n $$ as long as n≤2pN$$ n\\le {2}^{pN} $$ for any fixed p<12$$ p<\\frac{1}{2} $$ . We refer to the regime n≪2N/2$$ n\\ll {2}^{N/2} $$ as the dilute phase. We discuss conjectures concerning different behaviors of cn(N)$$ {c}_n^{(N)} $$ when n$$ n $$ reaches and exceeds 2N/2$$ {2}^{N/2} $$ , corresponding to a critical window and a dense phase. In addition, we prove that the connective constant has an asymptotic expansion to all orders in N−1$$ {N}^{-1} $$ , with integer coefficients, and we compute the first five coefficients μN=N−1−N−1−4N−2−26N−3+O(N−4)$$ {\\mu}_N=N-1-{N}^{-1}-4{N}^{-2}-26{N}^{-3}+O\\left({N}^{-4}\\right) $$ . The proofs are based on generating function and Tauberian methods implemented via the lace expansion, for which an introductory account is provided.","PeriodicalId":54523,"journal":{"name":"Random Structures & Algorithms","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Random Structures & Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/rsa.21117","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 3

Abstract

We study the number cn(N)$$ {c}_n^{(N)} $$ of n$$ n $$ ‐step self‐avoiding walks on the N$$ N $$ ‐dimensional hypercube, and identify an N$$ N $$ ‐dependent connective constant μN$$ {\mu}_N $$ and amplitude AN$$ {A}_N $$ such that cn(N)$$ {c}_n^{(N)} $$ is O(μNn)$$ O\left({\mu}_N^n\right) $$ for all n$$ n $$ and N$$ N $$ , and is asymptotically ANμNn$$ {A}_N{\mu}_N^n $$ as long as n≤2pN$$ n\le {2}^{pN} $$ for any fixed p<12$$ p<\frac{1}{2} $$ . We refer to the regime n≪2N/2$$ n\ll {2}^{N/2} $$ as the dilute phase. We discuss conjectures concerning different behaviors of cn(N)$$ {c}_n^{(N)} $$ when n$$ n $$ reaches and exceeds 2N/2$$ {2}^{N/2} $$ , corresponding to a critical window and a dense phase. In addition, we prove that the connective constant has an asymptotic expansion to all orders in N−1$$ {N}^{-1} $$ , with integer coefficients, and we compute the first five coefficients μN=N−1−N−1−4N−2−26N−3+O(N−4)$$ {\mu}_N=N-1-{N}^{-1}-4{N}^{-2}-26{N}^{-3}+O\left({N}^{-4}\right) $$ . The proofs are based on generating function and Tauberian methods implemented via the lace expansion, for which an introductory account is provided.
在超立方体上自我避免行走
我们研究了N $$ n $$步距自避免行走在N $$ N $$维超cube上的cn(N) $$ {c}_n^{(N)} $$,并确定了一个N $$ N $$依赖的连接常数μN $$ {\mu}_N $$和振幅an $$ {A}_N $$,使得cn(N) $$ {c}_n^{(N)} $$对于所有N $$ n $$和N $$ N $$都是O(μNn) $$ O\left({\mu}_N^n\right) $$,并且对于任何固定的p<12 $$ p<\frac{1}{2} $$,只要N≤2pN $$ n\le {2}^{pN} $$, cn(N) $$ {A}_N{\mu}_N^n $$是渐近的an μNn 。我们把状态n≪2N/2 $$ n\ll {2}^{N/2} $$称为稀相。我们讨论了当N $$ n $$达到和超过2N/2 $$ {2}^{N/2} $$时cn(N) $$ {c}_n^{(N)} $$不同行为的猜想,对应于临界窗口和致密相。此外,我们证明了连接常数在N−1 $$ {N}^{-1} $$中具有所有阶的渐近展开式,且系数为整数,并计算了前五个系数μN=N−1−N−1−4N−2−26N−3+O(N−4)$$ {\mu}_N=N-1-{N}^{-1}-4{N}^{-2}-26{N}^{-3}+O\left({N}^{-4}\right) $$。这些证明是基于生成函数和通过蕾丝展开实现的陶伯利方法,并提供了一个介绍性的说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Random Structures & Algorithms
Random Structures & Algorithms 数学-计算机:软件工程
CiteScore
2.50
自引率
10.00%
发文量
56
审稿时长
>12 weeks
期刊介绍: It is the aim of this journal to meet two main objectives: to cover the latest research on discrete random structures, and to present applications of such research to problems in combinatorics and computer science. The goal is to provide a natural home for a significant body of current research, and a useful forum for ideas on future studies in randomness. Results concerning random graphs, hypergraphs, matroids, trees, mappings, permutations, matrices, sets and orders, as well as stochastic graph processes and networks are presented with particular emphasis on the use of probabilistic methods in combinatorics as developed by Paul Erdõs. The journal focuses on probabilistic algorithms, average case analysis of deterministic algorithms, and applications of probabilistic methods to cryptography, data structures, searching and sorting. The journal also devotes space to such areas of probability theory as percolation, random walks and combinatorial aspects of probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信