Optimal versus Naive Diversification: False Discoveries, Transaction Costs and Machine Learning

Mutual Funds Pub Date : 2021-04-01 DOI:10.2139/ssrn.3346139
A. Zareei
{"title":"Optimal versus Naive Diversification: False Discoveries, Transaction Costs and Machine Learning","authors":"A. Zareei","doi":"10.2139/ssrn.3346139","DOIUrl":null,"url":null,"abstract":"This paper shows that sophisticated diversification strategies never underperform the 1/N rule when adjusting for multiple testing; however, their edge is severely undermined by transaction costs. As a way forward, this paper provides a machine learning approach for ex-ante strategy selection. By linking the characteristics of investment scenarios to the out-of-sample performance of strategies, the algorithm never underperforms the 1/N rule, even in the presence of relatively high transaction costs.","PeriodicalId":18891,"journal":{"name":"Mutual Funds","volume":"127 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutual Funds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3346139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper shows that sophisticated diversification strategies never underperform the 1/N rule when adjusting for multiple testing; however, their edge is severely undermined by transaction costs. As a way forward, this paper provides a machine learning approach for ex-ante strategy selection. By linking the characteristics of investment scenarios to the out-of-sample performance of strategies, the algorithm never underperforms the 1/N rule, even in the presence of relatively high transaction costs.
最优与朴素多样化:错误发现、交易成本和机器学习
本文表明,在调整多重测试时,复杂的多元化策略不会低于1/N规则;然而,交易成本严重削弱了它们的优势。在此基础上,本文提出了一种用于事前策略选择的机器学习方法。通过将投资场景的特征与策略的样本外表现联系起来,即使在存在相对较高的交易成本的情况下,该算法也不会低于1/N规则。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信