Paucity problems and some relatives of Vinogradov’s mean value theorem

IF 0.6 3区 数学 Q3 MATHEMATICS
T. Wooley
{"title":"Paucity problems and some relatives of Vinogradov’s mean value theorem","authors":"T. Wooley","doi":"10.1017/S0305004123000166","DOIUrl":null,"url":null,"abstract":"Abstract When \n$k\\geqslant 4$\n and \n$0\\leqslant d\\leqslant (k-2)/4$\n , we consider the system of Diophantine equations \n\\begin{align*}x_1^j+\\ldots +x_k^j=y_1^j+\\ldots +y_k^j\\quad (1\\leqslant j\\leqslant k,\\, j\\ne k-d).\\end{align*}\n We show that in this cousin of a Vinogradov system, there is a paucity of non-diagonal positive integral solutions. Our quantitative estimates are particularly sharp when \n$d=o\\!\\left(k^{1/4}\\right)$\n .","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"42 1","pages":"327 - 343"},"PeriodicalIF":0.6000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0305004123000166","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract When $k\geqslant 4$ and $0\leqslant d\leqslant (k-2)/4$ , we consider the system of Diophantine equations \begin{align*}x_1^j+\ldots +x_k^j=y_1^j+\ldots +y_k^j\quad (1\leqslant j\leqslant k,\, j\ne k-d).\end{align*} We show that in this cousin of a Vinogradov system, there is a paucity of non-diagonal positive integral solutions. Our quantitative estimates are particularly sharp when $d=o\!\left(k^{1/4}\right)$ .
维诺格拉多夫中值定理的一些相关问题
摘要:当$k\geqslant 4$和$0\leqslant d\leqslant (k-2)/4$时,我们考虑Diophantine方程组\begin{align*}x_1^j+\ldots +x_k^j=y_1^j+\ldots +y_k^j\quad (1\leqslant j\leqslant k,\, j\ne k-d).\end{align*}。我们证明了在这类维诺格拉多夫系统中,存在非对角正积分解的稀少性。我们的定量估计在$d=o\!\left(k^{1/4}\right)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信