{"title":"Paucity problems and some relatives of Vinogradov’s mean value theorem","authors":"T. Wooley","doi":"10.1017/S0305004123000166","DOIUrl":null,"url":null,"abstract":"Abstract When \n$k\\geqslant 4$\n and \n$0\\leqslant d\\leqslant (k-2)/4$\n , we consider the system of Diophantine equations \n\\begin{align*}x_1^j+\\ldots +x_k^j=y_1^j+\\ldots +y_k^j\\quad (1\\leqslant j\\leqslant k,\\, j\\ne k-d).\\end{align*}\n We show that in this cousin of a Vinogradov system, there is a paucity of non-diagonal positive integral solutions. Our quantitative estimates are particularly sharp when \n$d=o\\!\\left(k^{1/4}\\right)$\n .","PeriodicalId":18320,"journal":{"name":"Mathematical Proceedings of the Cambridge Philosophical Society","volume":"42 1","pages":"327 - 343"},"PeriodicalIF":0.6000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Proceedings of the Cambridge Philosophical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/S0305004123000166","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
Abstract When
$k\geqslant 4$
and
$0\leqslant d\leqslant (k-2)/4$
, we consider the system of Diophantine equations
\begin{align*}x_1^j+\ldots +x_k^j=y_1^j+\ldots +y_k^j\quad (1\leqslant j\leqslant k,\, j\ne k-d).\end{align*}
We show that in this cousin of a Vinogradov system, there is a paucity of non-diagonal positive integral solutions. Our quantitative estimates are particularly sharp when
$d=o\!\left(k^{1/4}\right)$
.
期刊介绍:
Papers which advance knowledge of mathematics, either pure or applied, will be considered by the Editorial Committee. The work must be original and not submitted to another journal.