{"title":"Upper Bounds on Quantum Query Complexity Inspired by the Elitzur--Vaidman Bomb Tester","authors":"Cedric Yen-Yu Lin, Han-Hsuan Lin","doi":"10.4086/toc.2016.v012a018","DOIUrl":null,"url":null,"abstract":"Inspired by the Elitzur-Vaidman bomb testing problem [arXiv:hep-th/9305002], we introduce a new query complexity model, which we call bomb query complexity $B(f)$. We investigate its relationship with the usual quantum query complexity $Q(f)$, and show that $B(f)=\\Theta(Q(f)^2)$. \nThis result gives a new method to upper bound the quantum query complexity: we give a method of finding bomb query algorithms from classical algorithms, which then provide nonconstructive upper bounds on $Q(f)=\\Theta(\\sqrt{B(f)})$. We subsequently were able to give explicit quantum algorithms matching our upper bound method. We apply this method on the single-source shortest paths problem on unweighted graphs, obtaining an algorithm with $O(n^{1.5})$ quantum query complexity, improving the best known algorithm of $O(n^{1.5}\\sqrt{\\log n})$ [arXiv:quant-ph/0606127]. Applying this method to the maximum bipartite matching problem gives an $O(n^{1.75})$ algorithm, improving the best known trivial $O(n^2)$ upper bound.","PeriodicalId":55992,"journal":{"name":"Theory of Computing","volume":"233 1","pages":"537-566"},"PeriodicalIF":0.6000,"publicationDate":"2014-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4086/toc.2016.v012a018","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 32
Abstract
Inspired by the Elitzur-Vaidman bomb testing problem [arXiv:hep-th/9305002], we introduce a new query complexity model, which we call bomb query complexity $B(f)$. We investigate its relationship with the usual quantum query complexity $Q(f)$, and show that $B(f)=\Theta(Q(f)^2)$.
This result gives a new method to upper bound the quantum query complexity: we give a method of finding bomb query algorithms from classical algorithms, which then provide nonconstructive upper bounds on $Q(f)=\Theta(\sqrt{B(f)})$. We subsequently were able to give explicit quantum algorithms matching our upper bound method. We apply this method on the single-source shortest paths problem on unweighted graphs, obtaining an algorithm with $O(n^{1.5})$ quantum query complexity, improving the best known algorithm of $O(n^{1.5}\sqrt{\log n})$ [arXiv:quant-ph/0606127]. Applying this method to the maximum bipartite matching problem gives an $O(n^{1.75})$ algorithm, improving the best known trivial $O(n^2)$ upper bound.
期刊介绍:
"Theory of Computing" (ToC) is an online journal dedicated to the widest dissemination, free of charge, of research papers in theoretical computer science.
The journal does not differ from the best existing periodicals in its commitment to and method of peer review to ensure the highest quality. The scientific content of ToC is guaranteed by a world-class editorial board.