Upper Bounds on Quantum Query Complexity Inspired by the Elitzur--Vaidman Bomb Tester

IF 0.6 4区 计算机科学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Cedric Yen-Yu Lin, Han-Hsuan Lin
{"title":"Upper Bounds on Quantum Query Complexity Inspired by the Elitzur--Vaidman Bomb Tester","authors":"Cedric Yen-Yu Lin, Han-Hsuan Lin","doi":"10.4086/toc.2016.v012a018","DOIUrl":null,"url":null,"abstract":"Inspired by the Elitzur-Vaidman bomb testing problem [arXiv:hep-th/9305002], we introduce a new query complexity model, which we call bomb query complexity $B(f)$. We investigate its relationship with the usual quantum query complexity $Q(f)$, and show that $B(f)=\\Theta(Q(f)^2)$. \nThis result gives a new method to upper bound the quantum query complexity: we give a method of finding bomb query algorithms from classical algorithms, which then provide nonconstructive upper bounds on $Q(f)=\\Theta(\\sqrt{B(f)})$. We subsequently were able to give explicit quantum algorithms matching our upper bound method. We apply this method on the single-source shortest paths problem on unweighted graphs, obtaining an algorithm with $O(n^{1.5})$ quantum query complexity, improving the best known algorithm of $O(n^{1.5}\\sqrt{\\log n})$ [arXiv:quant-ph/0606127]. Applying this method to the maximum bipartite matching problem gives an $O(n^{1.75})$ algorithm, improving the best known trivial $O(n^2)$ upper bound.","PeriodicalId":55992,"journal":{"name":"Theory of Computing","volume":"233 1","pages":"537-566"},"PeriodicalIF":0.6000,"publicationDate":"2014-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4086/toc.2016.v012a018","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 32

Abstract

Inspired by the Elitzur-Vaidman bomb testing problem [arXiv:hep-th/9305002], we introduce a new query complexity model, which we call bomb query complexity $B(f)$. We investigate its relationship with the usual quantum query complexity $Q(f)$, and show that $B(f)=\Theta(Q(f)^2)$. This result gives a new method to upper bound the quantum query complexity: we give a method of finding bomb query algorithms from classical algorithms, which then provide nonconstructive upper bounds on $Q(f)=\Theta(\sqrt{B(f)})$. We subsequently were able to give explicit quantum algorithms matching our upper bound method. We apply this method on the single-source shortest paths problem on unweighted graphs, obtaining an algorithm with $O(n^{1.5})$ quantum query complexity, improving the best known algorithm of $O(n^{1.5}\sqrt{\log n})$ [arXiv:quant-ph/0606127]. Applying this method to the maximum bipartite matching problem gives an $O(n^{1.75})$ algorithm, improving the best known trivial $O(n^2)$ upper bound.
受Elitzur- Vaidman炸弹测试仪启发的量子查询复杂度上界
受elitzer - vaidman炸弹测试问题[arXiv: help -th/9305002]的启发,我们引入了一种新的查询复杂度模型,我们称之为炸弹查询复杂度$B(f)$。我们研究了它与通常的量子查询复杂度$Q(f)$的关系,并表明$B(f)=\Theta(Q(f)^2)$。这一结果给出了一种计算量子查询复杂度上界的新方法:我们给出了一种从经典算法中寻找炸弹查询算法的方法,然后给出了$Q(f)=\Theta(\sqrt{B(f)})$上的非构造上界。我们随后能够给出与上界方法相匹配的显式量子算法。我们将该方法应用于无加权图上的单源最短路径问题,得到了一个具有$O(n^{1.5})$量子查询复杂度的算法,改进了最著名的算法$O(n^{1.5}\sqrt{\log n})$ [arXiv: quantantph /0606127]。将该方法应用于最大二部匹配问题,给出了一个$O(n^{1.75})$算法,改进了已知的最平凡的$O(n^2)$上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Theory of Computing
Theory of Computing Computer Science-Computational Theory and Mathematics
CiteScore
2.60
自引率
10.00%
发文量
23
期刊介绍: "Theory of Computing" (ToC) is an online journal dedicated to the widest dissemination, free of charge, of research papers in theoretical computer science. The journal does not differ from the best existing periodicals in its commitment to and method of peer review to ensure the highest quality. The scientific content of ToC is guaranteed by a world-class editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信