Beta reduction is invariant, indeed

Beniamino Accattoli, Ugo Dal Lago
{"title":"Beta reduction is invariant, indeed","authors":"Beniamino Accattoli, Ugo Dal Lago","doi":"10.1145/2603088.2603105","DOIUrl":null,"url":null,"abstract":"Slot and van Emde Boas' weak invariance thesis states that reasonable machines can simulate each other within a polynomially overhead in time. Is λ-calculus a reasonable machine? Is there a way to measure the computational complexity of a λ-term? This paper presents the first complete positive answer to this long-standing problem. Moreover, our answer is completely machine-independent and based over a standard notion in the theory of λ-calculus: the length of a leftmost-outermost derivation to normal form is an invariant cost model. Such a theorem cannot be proved by directly relating λ-calculus with Turing machines or random access machines, because of the size explosion problem: there are terms that in a linear number of steps produce an exponentially long output. The first step towards the solution is to shift to a notion of evaluation for which the length and the size of the output are linearly related. This is done by adopting the linear substitution calculus (LSC), a calculus of explicit substitutions modelled after linear logic proof nets and admitting a decomposition of leftmost-outermost derivations with the desired property. Thus, the LSC is invariant with respect to, say, random access machines. The second step is to show that LSC is invariant with respect to the λ-calculus. The size explosion problem seems to imply that this is not possible: having the same notions of normal form, evaluation in the LSC is exponentially longer than in the λ-calculus. We solve such an impasse by introducing a new form of shared normal form and shared reduction, deemed useful. Useful evaluation avoids those steps that only unshare the output without contributing to β-redexes, i.e. the steps that cause the blow-up in size. The main technical contribution of the paper is indeed the definition of useful reductions and the thorough analysis of their properties.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"227 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"84","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2603088.2603105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 84

Abstract

Slot and van Emde Boas' weak invariance thesis states that reasonable machines can simulate each other within a polynomially overhead in time. Is λ-calculus a reasonable machine? Is there a way to measure the computational complexity of a λ-term? This paper presents the first complete positive answer to this long-standing problem. Moreover, our answer is completely machine-independent and based over a standard notion in the theory of λ-calculus: the length of a leftmost-outermost derivation to normal form is an invariant cost model. Such a theorem cannot be proved by directly relating λ-calculus with Turing machines or random access machines, because of the size explosion problem: there are terms that in a linear number of steps produce an exponentially long output. The first step towards the solution is to shift to a notion of evaluation for which the length and the size of the output are linearly related. This is done by adopting the linear substitution calculus (LSC), a calculus of explicit substitutions modelled after linear logic proof nets and admitting a decomposition of leftmost-outermost derivations with the desired property. Thus, the LSC is invariant with respect to, say, random access machines. The second step is to show that LSC is invariant with respect to the λ-calculus. The size explosion problem seems to imply that this is not possible: having the same notions of normal form, evaluation in the LSC is exponentially longer than in the λ-calculus. We solve such an impasse by introducing a new form of shared normal form and shared reduction, deemed useful. Useful evaluation avoids those steps that only unshare the output without contributing to β-redexes, i.e. the steps that cause the blow-up in size. The main technical contribution of the paper is indeed the definition of useful reductions and the thorough analysis of their properties.
减少确实是不变的
Slot和van Emde Boas的弱不变性理论表明,合理的机器可以在多项式的时间开销内相互模拟。λ微积分是一个合理的机器吗?有没有一种方法可以测量λ项的计算复杂度?本文对这个长期存在的问题提出了第一个完整的积极的答案。此外,我们的答案是完全独立于机器的,并且基于λ微积分理论中的一个标准概念:范式的最左最外导数的长度是一个不变的成本模型。这样的定理不能通过直接将λ微积分与图灵机或随机存取机联系起来来证明,因为存在大小爆炸问题:有些项在线性数的步骤中产生指数级长的输出。解决方案的第一步是转换到计算的概念,其中输出的长度和大小是线性相关的。这是通过采用线性代换演算(LSC)来完成的,这是一种基于线性逻辑证明网建模的显式代换演算,并允许分解具有所需性质的最左最外导数。因此,LSC对于随机存取机来说是不变的。第二步是证明LSC对于λ微积分是不变的。尺寸爆炸问题似乎暗示这是不可能的:具有相同的范式概念,在LSC中计算比在λ-微积分中计算指数更长。我们通过引入一种被认为有用的共享范式和共享约简的新形式来解决这样的僵局。有用的评估可以避免那些只取消共享输出而不导致β- rexes的步骤,即导致大小膨胀的步骤。本文的主要技术贡献确实是有用约简的定义和对其性质的彻底分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信