Random nilpotent groups, polycyclic presentations, and Diophantine problems

IF 0.1 Q4 MATHEMATICS
A. Garreta, A. Myasnikov, D. Ovchinnikov
{"title":"Random nilpotent groups, polycyclic presentations, and Diophantine problems","authors":"A. Garreta, A. Myasnikov, D. Ovchinnikov","doi":"10.1515/gcc-2017-0007","DOIUrl":null,"url":null,"abstract":"Abstract We introduce a model of random finitely generated, torsion-free, 2-step nilpotent groups (in short, τ 2 {\\tau_{2}} -groups). To do so, we show that these are precisely the groups with presentation of the form 〈 A , C ∣ [ a i , a j ] = ∏ t = 1 m c t λ t , i , j ( 1 ≤ i < j ≤ n ) , [ A , C ] = [ C , C ] = 1 〉 {\\langle A,C\\mid[a_{i},a_{j}]=\\prod_{t=1}^{m}c_{t}^{\\lambda_{t,i,j}}(1\\leq i<j% \\leq n),\\,[A,C]=[C,C]=1\\rangle} , where A = { a 1 , … , a n } {A=\\{a_{1},\\dots,a_{n}\\}} and C = { c 1 , … , c m } {C=\\{c_{1},\\dots,c_{m}\\}} . Hence, a random G can be selected by fixing A and C, and then randomly choosing integers λ t , i , j {\\lambda_{t,i,j}} , with | λ t , i , j | ≤ ℓ {|\\lambda_{t,i,j}|\\leq\\ell} for some ℓ {\\ell} . We prove that if m ≥ n - 1 ≥ 1 {m\\geq n-1\\geq 1} , then the following hold asymptotically almost surely as ℓ → ∞ {\\ell\\to\\infty} : the ring ℤ {\\mathbb{Z}} is e-definable in G, the Diophantine problem over G is undecidable, the maximal ring of scalars of G is ℤ {\\mathbb{Z}} , G is indecomposable as a direct product of non-abelian groups, and Z ⁢ ( G ) = 〈 C 〉 {Z(G)=\\langle C\\rangle} . We further study when Z ⁢ ( G ) ≤ Is ⁡ ( G ′ ) {Z(G)\\leq\\operatorname{Is}(G^{\\prime})} . Finally, we introduce similar models of random polycyclic groups and random f.g. nilpotent groups of any nilpotency step, possibly with torsion. We quickly see, however, that the latter yields finite groups a.a.s.","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"129 1","pages":"115 - 99"},"PeriodicalIF":0.1000,"publicationDate":"2016-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/gcc-2017-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 13

Abstract

Abstract We introduce a model of random finitely generated, torsion-free, 2-step nilpotent groups (in short, τ 2 {\tau_{2}} -groups). To do so, we show that these are precisely the groups with presentation of the form 〈 A , C ∣ [ a i , a j ] = ∏ t = 1 m c t λ t , i , j ( 1 ≤ i < j ≤ n ) , [ A , C ] = [ C , C ] = 1 〉 {\langle A,C\mid[a_{i},a_{j}]=\prod_{t=1}^{m}c_{t}^{\lambda_{t,i,j}}(1\leq i
随机幂零群,多环表示和丢番图问题
摘要引入了一个随机有限生成、无扭转、2步幂零群(即τ 2 {\tau_{2}} -群)的模型。为此,我们表明,恰恰是这些组织的演讲形式< A, C∣[我、j] =∏t = 1 m C tλ,i, j(1≤我< j≤n), [A、C] = [C, C] = 1 >{中期\ langle A、C \[现代{},现代{j}] = \ prod_ {t = 1} ^ {m} c_ {t} ^ {\ lambda_ {t i, j}} (1 \ leq i < j % \ leq n), \ [A、C] = [C, C] = 1 \纠正},,={1,…,n}{= \{现代{1},\点,现代{n} \}}和C ={1,…,C m} {C = \ {c_{1}, \点,c_ {m} \}}。因此,可以通过固定a和C来选择一个随机的G,然后随机选择整数λ t,i,j {\lambda_{t,i,j}},并且对于某些∑{\ \ell}, λ t,i,j}≤∑{|\lambda_{t,i,j}|\leq\ell}。我们证明如果m≥n - 1≥1 {m \组的n - 1 \组1},然后下面保持渐近几乎肯定ℓ→∞{\魔法\ \ infty}:戒指ℤ{\ mathbb {Z}} e-definable在G / G的丢番图问题是不可判定的,G的最大圈标量ℤ{\ mathbb {Z}}, G是不能分解的非阿贝尔群的直积,和Z⁢(G) = < C > {Z (G) = \ langle C \捕杀}。进一步研究了当Z(G)≤Is (G) {Z(G)\leq\operatorname{Is}(G^{\prime})}时的情形。最后,我们引入了任意幂零阶的随机多环群和随机f.g.幂零群的相似模型。然而,我们很快就会发现,后者也会产生有限群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信