Extremal polygonal cacti for Wiener index and Kirchhoff index

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY
Mingyao Zeng, Qiqi Xiao, Zikai Tang, H. Deng
{"title":"Extremal polygonal cacti for Wiener index and Kirchhoff index","authors":"Mingyao Zeng, Qiqi Xiao, Zikai Tang, H. Deng","doi":"10.22052/IJMC.2020.225271.1497","DOIUrl":null,"url":null,"abstract":"For a connected graph G, the Wiener index W(G) of G is the sum of the distances of all pairs of vertices, the Kirchhoff index Kf(G) of G is the sum of the resistance distances of all pairs of vertices. A k-polygonal cactus is a connected graph in which the length of every cycle is k and any two cycles have at most one common vertex. In this paper, we give the maximum and minimum values of the Wiener index and the Kirchhoff index for all k-polygonal cacti with n cycles and determine the corresponding extremal graphs, generalize results of spiro hexagonal chains with n hexagons.","PeriodicalId":14545,"journal":{"name":"Iranian journal of mathematical chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian journal of mathematical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/IJMC.2020.225271.1497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

For a connected graph G, the Wiener index W(G) of G is the sum of the distances of all pairs of vertices, the Kirchhoff index Kf(G) of G is the sum of the resistance distances of all pairs of vertices. A k-polygonal cactus is a connected graph in which the length of every cycle is k and any two cycles have at most one common vertex. In this paper, we give the maximum and minimum values of the Wiener index and the Kirchhoff index for all k-polygonal cacti with n cycles and determine the corresponding extremal graphs, generalize results of spiro hexagonal chains with n hexagons.
极值多边形仙人掌的Wiener指数和Kirchhoff指数
对于连通图G, G的Wiener指数W(G)是所有对顶点的距离之和,G的Kirchhoff指数Kf(G)是所有对顶点的电阻距离之和。k多边形仙人掌是一个连通图,其中每个循环的长度为k,任意两个循环最多有一个公共顶点。本文给出了所有n个环的k多边形cacti的Wiener指标和Kirchhoff指标的最大值和最小值,并确定了相应的极值图,推广了n个六边形螺旋链的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iranian journal of mathematical chemistry
Iranian journal of mathematical chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
2.10
自引率
7.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信