Occurrence of gap for one-dimensional scalar autonomous functionals with one end point condition

Cerf Raphael, Mariconda Carlo
{"title":"Occurrence of gap for one-dimensional scalar autonomous functionals with one end point condition","authors":"Cerf Raphael, Mariconda Carlo","doi":"10.2422/2036-2145.202209_007","DOIUrl":null,"url":null,"abstract":"Let $L:\\mathbb R\\times \\mathbb R\\to [0, +\\infty[\\,\\cup\\{+\\infty\\}$ be a Borel function. We consider the problem \\begin{equation}\\tag{P}\\min F(y)=\\int_0^1L(y(t), y'(t))\\,dt: y(0)=0,\\, y\\in W^{1,1}([0,1],\\mathbb R).\\end{equation} We give an example of a real valued Lagrangian $L$ for which the Lavrentiev phenomenon occurs. We state a condition, involving only the behavior of $L$ on the graph of two functions, that ensures the non-occurrence of the phenomenon. Our criterium weakens substantially the well-known condition, that $L$ is bounded on bounded sets.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"207 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202209_007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let $L:\mathbb R\times \mathbb R\to [0, +\infty[\,\cup\{+\infty\}$ be a Borel function. We consider the problem \begin{equation}\tag{P}\min F(y)=\int_0^1L(y(t), y'(t))\,dt: y(0)=0,\, y\in W^{1,1}([0,1],\mathbb R).\end{equation} We give an example of a real valued Lagrangian $L$ for which the Lavrentiev phenomenon occurs. We state a condition, involving only the behavior of $L$ on the graph of two functions, that ensures the non-occurrence of the phenomenon. Our criterium weakens substantially the well-known condition, that $L$ is bounded on bounded sets.
具有一个端点条件的一维标量自治泛函的间隙的出现
设$L:\mathbb R\times \mathbb R\to [0, +\infty[\,\cup\{+\infty\}$为Borel函数。我们考虑问题\begin{equation}\tag{P}\min F(y)=\int_0^1L(y(t), y'(t))\,dt: y(0)=0,\, y\in W^{1,1}([0,1],\mathbb R).\end{equation}我们给出了一个实值拉格朗日方程$L$的例子,其中Lavrentiev现象发生。我们陈述一个条件,只涉及$L$在两个函数图上的行为,保证不发生这种现象。我们的准则实质上削弱了众所周知的条件,即$L$在有界集合上是有界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信