Bridging the gap between big data and game theory: A general hierarchical pricing framework

Zijie Zheng, Lingyang Song, Zhu Han
{"title":"Bridging the gap between big data and game theory: A general hierarchical pricing framework","authors":"Zijie Zheng, Lingyang Song, Zhu Han","doi":"10.1109/ICC.2017.7996334","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a general pricing framework, helping the controller promote agents to achieve its objective, for a big data network with one controller and a large number of agents. The convergence of the framework is guaranteed for a general class of objective functions: a separable convex function for the controller and a convex function for each agent. Specially, the proposed framework can converge linearly, when the controller's objective is strongly convex, and the agents' objectives have a uniform Lipschitz gradient. The convergence, and especially the linear convergence is not dependent on the number of agents, which is important for a network with large size. Through numerical results, we apply our pricing framework in a wireless virtualized network to verify its fast convergence, where the pricing framework converges after just a few steps.","PeriodicalId":6517,"journal":{"name":"2017 IEEE International Conference on Communications (ICC)","volume":"429 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2017.7996334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we propose a general pricing framework, helping the controller promote agents to achieve its objective, for a big data network with one controller and a large number of agents. The convergence of the framework is guaranteed for a general class of objective functions: a separable convex function for the controller and a convex function for each agent. Specially, the proposed framework can converge linearly, when the controller's objective is strongly convex, and the agents' objectives have a uniform Lipschitz gradient. The convergence, and especially the linear convergence is not dependent on the number of agents, which is important for a network with large size. Through numerical results, we apply our pricing framework in a wireless virtualized network to verify its fast convergence, where the pricing framework converges after just a few steps.
弥合大数据和博弈论之间的差距:一个通用的分层定价框架
本文针对一个控制器和大量代理的大数据网络,提出了一个通用的定价框架,帮助控制器促进代理实现其目标。对于一类一般的目标函数:控制器的可分离凸函数和每个代理的凸函数,保证了框架的收敛性。特别地,当控制器的目标是强凸且智能体的目标具有一致的Lipschitz梯度时,该框架可以线性收敛。网络的收敛性,特别是线性收敛性不依赖于智能体的数量,这对于一个大网络是很重要的。通过数值结果,我们将该定价框架应用于无线虚拟化网络,验证了其快速收敛性,其中定价框架只需几步即可收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信