Exploring Entity-Level Spatial Relationships for Image-Text Matching

Yaxian Xia, Lun Huang, Wenmin Wang, Xiao-Yong Wei, Jie Chen
{"title":"Exploring Entity-Level Spatial Relationships for Image-Text Matching","authors":"Yaxian Xia, Lun Huang, Wenmin Wang, Xiao-Yong Wei, Jie Chen","doi":"10.1109/ICASSP40776.2020.9054758","DOIUrl":null,"url":null,"abstract":"Exploring the entity-level (i.e., objects in an image, words in a text) spatial relationship contributes to understanding multimedia content precisely. The ignorance of spatial information in previous works probably leads to misunderstandings of image contents. For instance, sentences ‘Boats are on the water’ and ‘Boats are under the water’ describe the same objects, but correspond to different sceneries. To this end, we utilize the relative position of objects to capture entity-level spatial relationships for image-text matching. Specifically, we fuse semantic and spatial relationships of image objects in a visual intra-modal relation module. The module performs promisingly to understand image contents and improve object representation learning. It contributes to capturing entity-level latent correspondence of image-text pairs. Then the query (text) plays a role of textual context to refine the interpretable alignments of image-text pairs in the inter-modal relation module. Our proposed method achieves state-of-the-art results on MSCOCO and Flickr30K datasets.","PeriodicalId":13127,"journal":{"name":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"429 1","pages":"4452-4456"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP40776.2020.9054758","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Exploring the entity-level (i.e., objects in an image, words in a text) spatial relationship contributes to understanding multimedia content precisely. The ignorance of spatial information in previous works probably leads to misunderstandings of image contents. For instance, sentences ‘Boats are on the water’ and ‘Boats are under the water’ describe the same objects, but correspond to different sceneries. To this end, we utilize the relative position of objects to capture entity-level spatial relationships for image-text matching. Specifically, we fuse semantic and spatial relationships of image objects in a visual intra-modal relation module. The module performs promisingly to understand image contents and improve object representation learning. It contributes to capturing entity-level latent correspondence of image-text pairs. Then the query (text) plays a role of textual context to refine the interpretable alignments of image-text pairs in the inter-modal relation module. Our proposed method achieves state-of-the-art results on MSCOCO and Flickr30K datasets.
探索图像-文本匹配的实体级空间关系
探索实体层面(即图像中的对象,文本中的单词)的空间关系有助于准确地理解多媒体内容。以往作品对空间信息的忽视,可能会导致对图像内容的误解。例如,句子“船在水上”和“船在水下”描述的是相同的物体,但对应的是不同的风景。为此,我们利用对象的相对位置来捕获实体级空间关系以进行图像-文本匹配。具体来说,我们将图像对象的语义和空间关系融合在一个视觉模态内关系模块中。该模块在理解图像内容和改进对象表示学习方面表现良好。它有助于捕获图像-文本对的实体级潜在对应关系。然后,查询(文本)充当文本上下文的角色,在模态关系模块中细化图像-文本对的可解释对齐。我们提出的方法在MSCOCO和Flickr30K数据集上获得了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信